
Martin A Schroer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2752657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nature Communications, 2020, 11, 5588.	5.8	132
2	Intercalation in Layered Metal–Organic Frameworks: Reversible Inclusion of an Extended π-System. Journal of the American Chemical Society, 2011, 133, 8158-8161.	6.6	116
3	Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Applied Nano Materials, 2020, 3, 10634-10645.	2.4	108
4	Exploring the Piezophilic Behavior of Natural Cosolvent Mixtures. Angewandte Chemie - International Edition, 2011, 50, 11413-11416.	7.2	79
5	Single Shot Coherence Properties of the Free-Electron Laser SACLA in the Hard X-ray Regime. Scientific Reports, 2014, 4, 5234.	1.6	69
6	Concentration dependent effects of urea binding to poly(N-isopropylacrylamide) brushes: a combined experimental and numerical study. Physical Chemistry Chemical Physics, 2016, 18, 5324-5335.	1.3	61
7	Nonlinear Pressure Dependence of the Interaction Potential of Dense Protein Solutions. Physical Review Letters, 2011, 106, 178102.	2.9	60
8	Hybrid Biopolymer and Lipid Nanoparticles with Improved Transfection Efficacy for mRNA. Cells, 2020, 9, 2034.	1.8	57
9	Stabilizing effect of TMAO on globular PNIPAM states: preferential attraction induces preferential hydration. Physical Chemistry Chemical Physics, 2016, 18, 31459-31470.	1.3	55
10	The Effect of Ionic Strength, Temperature, and Pressure on the Interaction Potential of Dense Protein Solutions: From Nonlinear Pressure Response to Protein Crystallization. Biophysical Journal, 2012, 102, 2641-2648.	0.2	53
11	Influence of TMAO and urea on the structure of water studied by inelastic X-ray scattering. Physical Chemistry Chemical Physics, 2016, 18, 16518-16526.	1.3	50
12	High-Pressure SAXS Study of Folded and Unfolded Ensembles of Proteins. Biophysical Journal, 2010, 99, 3430-3437.	0.2	43
13	Investigation of charge ratio variation in mRNA – DEAE-dextran polyplex delivery systems. Biomaterials, 2019, 192, 612-620.	5.7	40
14	Correlated heterogeneous dynamics in glass-forming polymers. Physical Review E, 2015, 91, 042309.	0.8	39
15	Unique Features of the Folding Landscape of a Repeat Protein Revealed byÂPressure Perturbation. Biophysical Journal, 2010, 98, 2712-2721.	0.2	38
16	Ligand Layer Engineering To Control Stability and Interfacial Properties of Nanoparticles. Langmuir, 2016, 32, 7897-7907.	1.6	31
17	Phase separation and Si nanocrystal formation in bulk SiO studied by x-ray scattering. Applied Physics Letters, 2010, 96, .	1.5	30
18	Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser. Scientific Reports, 2015, 5, 17193.	1.6	30

MARTIN A SCHROER

#	Article	IF	CITATIONS
19	Water-Mediated Protein-Protein Interactions at High Pressures are Controlled by a Deep-Sea Osmolyte. Physical Review Letters, 2018, 121, 038101.	2.9	30
20	Recent developments in small-angle X-ray scattering and hybrid method approaches for biomacromolecular solutions. Emerging Topics in Life Sciences, 2018, 2, 69-79.	1.1	29
21	Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1293-1305.	1.5	28
22	Structural Kinetics of MsbA Investigated by Stopped-Flow Time-Resolved Small-Angle X-Ray Scattering. Structure, 2020, 28, 348-354.e3.	1.6	28
23	Investigation of pH-Responsiveness inside Lipid Nanoparticles for Parenteral mRNA Application Using Small-Angle X-ray Scattering. Langmuir, 2020, 36, 13331-13341.	1.6	28
24	Smaller capillaries improve the small-angle X-ray scattering signal and sample consumption for biomacromolecular solutions. Journal of Synchrotron Radiation, 2018, 25, 1113-1122.	1.0	27
25	Structuralization of magnetic nanoparticles in 5CB liquid crystals. Soft Matter, 2017, 13, 7890-7896.	1.2	24
26	Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application. ACS Applied Materials & Interfaces, 2021, 13, 23627-23637.	4.0	24
27	Tuning the Size of Thermoresponsive Poly(N-Isopropyl Acrylamide) Grafted Silica Microgels. Gels, 2017, 3, 34.	2.1	20
28	Self-Assembled Micelles from Thermoresponsive Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td (m Macromolecules, 2021, 54, 384-397.	ethacrylate) 2.2	- <i>b</i> poly 20
29	Tuning the Interaction of Nanoparticles from Repulsive to Attractive by Pressure. Journal of Physical Chemistry C, 2016, 120, 19856-19861.	1.5	19
30	Dynamics of soft nanoparticle suspensions at hard X-ray FEL sources below the radiation-damage threshold. IUCrJ, 2018, 5, 801-807.	1.0	18
31	Structure and Stability of PEG―and Mixed PEG‣ayerâ€Coated Nanoparticles at High Particle Concentrations Studied In Situ by Smallâ€Angle Xâ€Ray Scattering. Particle and Particle Systems Characterization, 2018, 35, 1700319.	1.2	17
32	Nano-beam X-ray microscopy of dried colloidal films. Soft Matter, 2015, 11, 5465-5472.	1.2	16
33	Hydration in aqueous solutions of ectoine and hydroxyectoine. Physical Chemistry Chemical Physics, 2018, 20, 27917-27923.	1.3	16
34	Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions. Journal of Physical Chemistry Letters, 2018, 9, 4720-4724.	2.1	14
35	Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations. IUCrJ, 2018, 5, 354-360.	1.0	14
36	Exploring the thermodynamic derivatives of the structure factor of dense protein solutions. Physical Chemistry Chemical Physics, 2012, 14, 9486.	1.3	13

MARTIN A SCHROER

#	Article	IF	CITATIONS
37	Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nature Communications, 2021, 12, 2889.	5.8	13
38	Co-Nonsolvency Effect in Solutions of Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (methacrylat Mixtures. Macromolecules, 2021, 54, 5825-5837.	ze)- <i>b</i> - 2.2	poly(<i>N</i> - 13
39	Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films. Physical Review E, 2014, 90, 012309.	0.8	12
40	A miniature closed-circle flow cell for high photon flux X-ray scattering experiments. Journal of Synchrotron Radiation, 2015, 22, 1555-1558.	1.0	12
41	Colloidal crystallite suspensions studied by high pressure small angle x-ray scattering. Journal of Chemical Physics, 2016, 144, 084903.	1.2	11
42	Hydration in aqueous osmolyte solutions: the case of TMAO and urea. Physical Chemistry Chemical Physics, 2020, 22, 11614-11624.	1.3	11
43	Adsorption of nanoparticles at the solid–liquid interface. Journal of Colloid and Interface Science, 2012, 374, 287-290.	5.0	10
44	Slowing down of dynamics and orientational order preceding crystallization in hard-sphere systems. Science Advances, 2020, 6, .	4.7	10
45	A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources. Review of Scientific Instruments, 2016, 87, 063905.	0.6	9
46	Anomalous SAXS at P12 beamline EMBL Hamburg: instrumentation and applications. Journal of Synchrotron Radiation, 2021, 28, 812-823.	1.0	9
47	Dissolution of iron oxide nanoparticles inside polymer nanocapsules. Physical Chemistry Chemical Physics, 2011, 13, 20354.	1.3	8
48	Microsecond Structural Rheology. Journal of Physical Chemistry Letters, 2017, 8, 3581-3585.	2.1	8
49	Kinetics of pressure-induced nanocrystal superlattice formation. Physical Chemistry Chemical Physics, 2019, 21, 21349-21354.	1.3	7
50	Effect of the concentration of protein and nanoparticles on the structure of biohybrid nanocomposites. Biopolymers, 2020, 111, e23342.	1.2	7
51	ASAXS measurements on ferritin and apoferritin at the bioSAXS beamline P12 (PETRA III, DESY). Journal of Applied Crystallography, 2021, 54, 830-838.	1.9	6
52	A THz transparent 3D printed microfluidic cell for small angle x-ray scattering. Review of Scientific Instruments, 2020, 91, 084101.	0.6	5
53	Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt. Journal of Applied Crystallography, 2019, 52, 777-782.	1.9	5
54	Unraveling agglomeration and deagglomeration in aqueous colloidal dispersions of very small tin dioxide nanoparticles. Journal of Colloid and Interface Science, 2022, 608, 2681-2693.	5.0	5

MARTIN A SCHROER

#	Article	IF	CITATIONS
55	Manipulating thin polymer films by changing the pH value. Journal of Applied Physics, 2011, 110, .	1.1	4
56	Formation of iron containing aggregates at the liquid–air interface. Colloids and Surfaces B: Biointerfaces, 2013, 109, 74-81.	2.5	4
57	Supercrystal Formation of Gold Nanorods by High Pressure Stimulation. Journal of Physical Chemistry C, 2019, 123, 29994-30000.	1.5	4
58	Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Scientific Reports, 2021, 11, 22311.	1.6	4
59	A Multiperspective Approach to Solvent Regulation of Enzymatic Activity: HMGâ€CoA Reductase. ChemBioChem, 2018, 19, 153-158.	1.3	3
60	Clustering in ferronematics—The effect of magnetic collective ordering. IScience, 2021, 24, 103493.	1.9	3
61	Rigid-to-Flexible Transition in a Molecular Brush in a Good Solvent at a Semidilute Concentration. Langmuir, 2022, 38, 5226-5236.	1.6	3
62	Iron oxide film growth under ultrathin polysiloxane networks. Colloid and Polymer Science, 2013, 291, 653-659.	1.0	2
63	Study of time and pressure dependent phenomena at the hard x-ray beamline BL9 of DELTA. Journal of Physics: Conference Series, 2013, 425, 202006.	0.3	2
64	pH controlled condensation of polysiloxane networks at the water–air interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455, 44-48.	2.3	2
65	Dependence of the Nanoscale Composite Morphology of Fe3O4 Nanoparticle-Infused Lysozyme Amyloid Fibrils on Timing of Infusion: A Combined SAXS and AFM Study. Molecules, 2021, 26, 4864.	1.7	2
66	High-throughput and time-resolved BioSAXS at the P12 beamline of EMBL Hamburg. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s14-s14.	0.0	0
67	Status of the EMBL BioSAXS beamline P12 at PETRA III. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C686-C686.	0.0	0
68	Study and mitigation of radiation damage on the P12 BioSAXS beamline. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1026-C1026.	0.0	0
69	High-flux time-resolved experiments and anomalous scattering at EMBL P12 beamline. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C612-C612.	0.0	0
70	Recent developments towards high-flux time-resolved and terahertz SAXS experiments on the EMBL P12 BioSAXS beamline. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e639-e639.	0.0	0
71	Hydration in aqueous NaCl. Physical Chemistry Chemical Physics, 0, , .	1.3	0