
Frederico Graeff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2752172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early Life Stress in Depressive Patients: Role of Glucocorticoid and Mineralocorticoid Receptors and of Hypothalamic-Pituitary-Adrenal Axis Activity. Current Pharmaceutical Design, 2015, 21, 1369-1378.	1.9	45
2	New Findings on the Neurotransmitter Modulation of Defense in the Dorsal Periaqueductal Gray. CNS and Neurological Disorders - Drug Targets, 2015, 14, 988-995.	1.4	14
3	Hormonal changes and increased anxiety-like behavior in a perimenopause-animal model induced by 4-vinylcyclohexene diepoxide (VCD) in female rats. Psychoneuroendocrinology, 2014, 49, 130-140.	2.7	32
4	New perspective on the pathophysiology of panic: merging serotonin and opioids in the periaqueductal gray. Brazilian Journal of Medical and Biological Research, 2012, 45, 366-375.	1.5	35
5	The response of social anxiety disorder patients to threat scenarios differs from that of healthy controls. Brazilian Journal of Medical and Biological Research, 2011, 44, 1261-1268.	1.5	8
6	The role of dopamine in motor excitation of mice induced by brain catecholamine releasers. Journal of Pharmacy and Pharmacology, 2011, 18, 627-628.	2.4	8
7	Antagonism of morphine analgesia by reserpine and α-methyltyrosine and the role played by catecholamines in morphine analgesic action. Journal of Pharmacy and Pharmacology, 2011, 19, 264-265.	2.4	41
8	Effect of escitalopram on the processing of emotional faces. Brazilian Journal of Medical and Biological Research, 2010, 43, 285-289.	1.5	14
9	Escitalopram prolonged fear induced by simulated public speaking and released hypothalamic-pituitary-adrenal axis activation. Journal of Psychopharmacology, 2010, 24, 683-694.	4.0	20
10	Anxiolytic and panicolytic effects of escitalopram in the elevated T-maze. Journal of Psychopharmacology, 2008, 22, 132-137.	4.0	21
11	Defensive responses to threat scenarios in Brazilians reproduce the pattern of Hawaiian Americans and non-human mammals. Brazilian Journal of Medical and Biological Research, 2008, 41, 324-332.	1.5	28
12	Serotonergic modulation of face-emotion recognition. Brazilian Journal of Medical and Biological Research, 2008, 41, 263-269.	1.5	22
13	Anxiolytic effect of estradiol in the median raphe nucleus mediated by 5-HT1A receptors. Behavioural Brain Research, 2005, 163, 18-25.	2.2	41
14	The size and prevalence of the cavum septum pellucidum are normal in subjects with panic disorder. Brazilian Journal of Medical and Biological Research, 2004, 37, 371-374.	1.5	13
15	Pharmacology of human experimental anxiety. Brazilian Journal of Medical and Biological Research, 2003, 36, 421-432.	1.5	58
16	Decreased left temporal lobe volume of panic patients measured by magnetic resonance imaging. Brazilian Journal of Medical and Biological Research, 2003, 36, 925-929.	1.5	62
17	Do panic patients process unconditioned fear vs. conditioned anxiety differently than normal subjects?. Psychiatry Research, 2001, 104, 227-237.	3.3	37
18	The brain decade in debate: II. Panic or anxiety? From animal models to a neurobiological basis. Brazilian Journal of Medical and Biological Research, 2001, 34, 145-154.	1.5	21

#	Article	IF	CITATIONS
19	Defensive freezing evoked by electrical stimulation of the periaqueductal gray: comparison between dorsolateral and ventrolateral regions. NeuroReport, 2001, 12, 4109-4112.	1.2	98
20	Opposite effects of nefazodone in two human models of anxiety. Psychopharmacology, 2001, 156, 454-460.	3.1	37
21	Serotonergic regulation of inhibitory avoidance and one-way escape in the rat elevated T-maze. Neuroscience and Biobehavioral Reviews, 2001, 25, 637-645.	6.1	84
22	Comparison between two models of experimental anxiety in healthy volunteers and panic disorder patients. Neuroscience and Biobehavioral Reviews, 2001, 25, 753-759.	6.1	10
23	Modulation of defensive behavior by periaqueductal gray NMDA/glycine-B receptor. Neuroscience and Biobehavioral Reviews, 2001, 25, 697-709.	6.1	72
24	Differential expression of Fos protein in the rat brain induced by performance of avoidance or escape in the elevated T-maze. Behavioural Brain Research, 2001, 126, 13-21.	2.2	62
25	Effect of electrolytic and neurotoxic lesions of the median raphe nucleus on anxiety and stress. Pharmacology Biochemistry and Behavior, 2001, 70, 1-14.	2.9	77
26	Lesion of the Ventral Periaqueductal Gray Reduces Conditioned Fear but Does Not Change Freezing Induced by Stimulation of the Dorsal Periaqueductal Gray. Learning and Memory, 2001, 8, 164-169.	1.3	86
27	Behavioral Effects of Acute and Chronic Imipramine in the Elevated T-Maze Model of Anxiety. Pharmacology Biochemistry and Behavior, 2000, 65, 571-576.	2.9	187
28	Anxiety-induced antinociception in mice: effects of systemic and intra-amygdala administration of 8-OH-DPAT and midazolam. Psychopharmacology, 2000, 150, 300-310.	3.1	83
29	Effects of tryptophan depletion on anxiety induced by simulated public speaking. Brazilian Journal of Medical and Biological Research, 2000, 33, 581-587.	1.5	16
30	Reduction of latent inhibition by d-amphetamine in a conditioned suppression paradigm in humans. Behavioural Brain Research, 2000, 117, 61-67.	2.2	30
31	Associative learning and latent inhibition in a conditioned suppression paradigm in humans. Behavioural Brain Research, 2000, 117, 53-60.	2.2	14
32	Anxiolytic effect of intra-amygdala injection of midazolam and 8-hydroxy-2-(di-n-propylamino)tetralin in the elevated T-maze. European Journal of Pharmacology, 1999, 369, 267-270.	3.5	78
33	Evaluation of the elevated T-maze as an animal model of anxiety in the mouse. Brain Research Bulletin, 1999, 48, 407-411.	3.0	37
34	A neurotoxic lesion of serotonergic neurones using 5,7-dihydroxytryptamine does not disrupt latent inhibition in paradigms sensitive to low doses of amphetamine. Behavioural Brain Research, 1999, 100, 167-175.	2.2	16
35	Differential expression of c-fos mRNA and Fos protein in the rat brain after restraint stress or pentylenetetrazol-induced seizures. Cellular and Molecular Neurobiology, 1998, 18, 339-346.	3.3	21
36	The elevated T-maze as an experimental model of anxiety. Neuroscience and Biobehavioral Reviews, 1998, 23, 237-246.	6.1	289

#	Article	IF	CITATIONS
37	Involvement of the midbrain periaqueductal gray 5-HT1A receptors in social conflict induced analgesia in mice. European Journal of Pharmacology, 1998, 345, 253-256.	3.5	11
38	Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test. European Journal of Pharmacology, 1997, 323, 37-43.	3.5	101
39	SEROTONERGIC SYSTEMS. Psychiatric Clinics of North America, 1997, 20, 723-739.	1.3	61
40	Bilateral ablation of the auditory cortex in the rat alters conditioned emotional suppression to a sound as appraised through a latent inhibition study. Behavioural Brain Research, 1997, 88, 59-65.	2.2	11
41	Behavioral Validation of the Elevated T-Maze, a New Animal Model of Anxiety. Brain Research Bulletin, 1997, 44, 1-5.	3.0	126
42	High Intensity Social Conflict in the Swiss Albino Mouse Induces Analgesia Modulated by 5-HT1A Receptors. Pharmacology Biochemistry and Behavior, 1997, 56, 481-486.	2.9	9
43	Kainate Microinjection into the Dorsal Raphe Nucleus Induces 5-HT Release in the Amygdala and Periaqueductal Gray. Pharmacology Biochemistry and Behavior, 1997, 58, 167-172.	2.9	63
44	Role of 5-HT2A and 5-HT2C Receptor Subtypes in the Two Types of Fear Generated by the Elevated T-Maze. Pharmacology Biochemistry and Behavior, 1997, 58, 1051-1057.	2.9	76
45	Dual role of 5-HT in defense and anxiety. Neuroscience and Biobehavioral Reviews, 1997, 21, 791-799.	6.1	149
46	Effect ofd-fenfluramine on human experimental anxiety. Psychopharmacology, 1996, 127, 276-282.	3.1	29
47	Effect of d -fenfluramine on human experimental anxiety. Psychopharmacology, 1996, 127, 276-282.	3.1	1
48	Opposed regulation by dorsal raphe nucleus 5-HT pathways of two types of fear in the elevated T-maze. Pharmacology Biochemistry and Behavior, 1996, 53, 171-177.	2.9	76
49	Role of 5-HT in stress, anxiety, and depression. Pharmacology Biochemistry and Behavior, 1996, 54, 129-141.	2.9	843
50	Behavioral effects of the putative anxiolytic (±)-1-(2,5-dimethoxy-4-ethylthiophenyl)-2-aminopropane (ALEPH-2) in rats and mice. Pharmacology Biochemistry and Behavior, 1996, 54, 355-361.	2.9	15
51	Effects on Anxiety and Memory of Systemic and Intra-Amygdala Injection of 5-HT ₃ Receptor Antagonist BRL 46470A. Neuropsychobiology, 1996, 33, 189-195.	1.9	30
52	Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacology Biochemistry and Behavior, 1995, 52, 1-6.	2.9	118
53	C-fos immunoreactivity in the brain following electrical or chemical stimulation of the medial hypothalamus of freely moving rats. Brain Research, 1995, 674, 265-274.	2.2	48
54	Anxiolytic effect of glycine antagonists microinjected into the dorsal periaqueductal grey. Psychopharmacology, 1994, 113, 565-569.	3.1	48

#	Article	IF	CITATIONS
55	The elevated T-maze: A new animal model of anxiety and memory. Pharmacology Biochemistry and Behavior, 1994, 49, 549-554.	2.9	212
56	Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacology Biochemistry and Behavior, 1994, 49, 171-176.	2.9	713
57	Role of benzodiazepine receptors located in the dorsal periaqueductal grey of rats in anxiety. Psychopharmacology, 1993, 110, 198-202.	3.1	61
58	Trial 2 in the elevated plus-maze: a different form of fear?. Psychopharmacology, 1993, 111, 491-494.	3.1	189
59	Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behavioural Brain Research, 1993, 56, 115-118.	2.2	200
60	Localization in the amygdala of the amnestic action of diazepam on emotional memory. Behavioural Brain Research, 1993, 58, 99-105.	2.2	70
61	Absence of amnestic effect of an anxiolytic 5-HT3 antagonist (BRL 46470A) injected into basolateral amygdala, as opposed to diazepam. Behavioural Brain Research, 1993, 59, 141-145.	2.2	14
62	Effects of ipsapirone and cannabidiol on human experimental anxiety. Journal of Psychopharmacology, 1993, 7, 82-88.	4.0	298
63	Role of the amygdala and periaqueductal gray in anxiety and panic. Behavioural Brain Research, 1993, 58, 123-131.	2.2	271
64	Clinical implication of microdialysis findings. Trends in Pharmacological Sciences, 1993, 14, 263.	8.7	13
65	Role of 5-HT in Defensive Behavior and Anxiety. Reviews in the Neurosciences, 1993, 4, 181-211.	2.9	79
66	Defense reaction elicited by microinjection of kainic acid into the medial hypothalamus of the rat: Antagonism by a GABAA receptor agonist. Behavioral and Neural Biology, 1992, 57, 226-232.	2.2	64
67	Effects of early postnatal malnutrition and chlordiazepoxide on experimental aversive situations. Physiology and Behavior, 1992, 51, 1195-1199.	2.1	29
68	Opioid mediation of the antiaversive and hyperalgesic actions of bradykinin injected into the dorsal periaqueductal gray of the rat. Physiology and Behavior, 1992, 52, 405-410.	2.1	27
69	Anxiolytic effect of carbamazepine in the elevated plus-maze: possible role of adenosine. Psychopharmacology, 1992, 106, 85-89.	3.1	30
70	5-HT and mechanisms of defence. Journal of Psychopharmacology, 1991, 5, 305-315.	4.0	868
71	Electrophysiological evidence for excitatory 5-HT2 and depressant 5-HT1A receptors on neurones of the rat midbrain tectum. Brain Research, 1991, 556, 259-266.	2.2	84
72	5-HT mediation of the antiaversive effect of isamoltane injected into the dorsal periaqueductal grey. Behavioural Pharmacology, 1991, 2, 73.	1.7	30

#	Article	IF	CITATIONS
73	Anxiolytic effect in the elevated plus-maze of the NMDA receptor antagonist AP7 microinjected into the dorsal periaqueductal grey. Psychopharmacology, 1991, 103, 91-94.	3.1	137
74	Early life protein malnutrition changes exploration of the elevated plus-maze and reactivity to anxiolytics. Psychopharmacology, 1991, 103, 513-518.	3.1	67
75	Microinjection of propranolol into the dorsal periaqueductal gray causes an anxiolytic effect in the elevated plus-maze antagonized by ritanserin. Psychopharmacology, 1991, 105, 553-557.	3.1	37
76	5-HT and mechanisms of defence. Author's response. Journal of Psychopharmacology, 1991, 5, 339-341.	4.0	12
77	Neurotransmitters in the Dorsal Periaqueductal Grey and Animal Models of Panic Anxiety. , 1991, , 288-312.		31
78	Decreased reactivity to anxiolytics caused by early protein malnutrition in rats. Pharmacology Biochemistry and Behavior, 1990, 36, 997-1000.	2.9	29
79	Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology, 1990, 100, 558-559.	3.1	295
80	Behavioral effects of 5-HT receptor ligands in the aversive brain stimulation, elevated plus-maze and learned helplessness tests. Neuroscience and Biobehavioral Reviews, 1990, 14, 501-506.	6.1	27
81	Serotonergic mediation of the anxiolytic effect of intracerebrally injected propranolol measured in the elevated plus-maze. Brazilian Journal of Medical and Biological Research, 1989, 22, 699-701.	1.5	4
82	Mediation by serotonin of the antiaversive effect of zimelidine and propranolol injected into the dorsal midbrain central grey. Journal of Psychopharmacology, 1988, 2, 26-32.	4.0	34
83	Early malnutrition alters the effect of chlordiazepoxide on inhibitory avoidance. Brazilian Journal of Medical and Biological Research, 1988, 21, 1033-6.	1.5	1
84	Effect of chlorimipramine and maprotiline on experimental anxiety in humans. Journal of Psychopharmacology, 1987, 1, 184-192.	4.0	73
85	GABAA receptors in the midbrain central grey mediate the antiaversive action of GABA. European Journal of Pharmacology, 1987, 135, 225-229.	3.5	21
86	GABA-Benzodiazepine modulation of aversion in the medial hypothalamus of the rat. Pharmacology Biochemistry and Behavior, 1987, 28, 21-27.	2.9	60
87	Modulation of the brain aversive system by gabaregic and serotonergic mechanisms. Behavioural Brain Research, 1986, 22, 173-180.	2.2	43
88	Modulation of the brain aversive system by GABAergic and serotonergic mechanisms. Behavioural Brain Research, 1986, 21, 65-72.	2.2	47
89	5-Hydroxytryptamine, aversion, and anxiety. Behavioral and Brain Sciences, 1986, 9, 339-340.	0.7	4
90	Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology, 1985, 85, 340-345.	3.1	146

#	Article	IF	CITATIONS
91	Effect of metergoline on human anxiety. Psychopharmacology, 1985, 86, 334-338.	3.1	80
92	Defensive behavior and hypertension induced by glutamate in the midbrain central gray of the rat. Brazilian Journal of Medical and Biological Research, 1985, 18, 61-7.	1.5	17
93	Benzodiazepine receptors in the periaqueductal grey mediate anti-aversive drug action. European Journal of Pharmacology, 1984, 103, 279-285.	3.5	62
94	Role of 5-hydroxytryptamine in amphetamine effects on punished and unpunished behaviour. Psychopharmacology, 1983, 80, 78-82.	3.1	18
95	GABA modulation of the defense reaction induced by brain electrical stimulation. Physiology and Behavior, 1983, 31, 429-437.	2.1	62
96	Neuroeffector mechanisms of the defense reaction in the rat. Physiology and Behavior, 1983, 31, 439-444.	2.1	27
97	GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacology Biochemistry and Behavior, 1982, 16, 397-402.	2.9	178
98	Effect of minor tranquilizers, tryptamine antagonists and amphetamine on behavior punished by brain stimulation. Pharmacology Biochemistry and Behavior, 1981, 15, 351-356.	2.9	25
99	Minor tranquilizers and brain defense systems. Brazilian Journal of Medical and Biological Research, 1981, 14, 239-65.	1.5	8
100	Facilitatory effect of ketamine on punished behavior. Pharmacology Biochemistry and Behavior, 1980, 13, 1-4.	2.9	19
101	Dorsal periaqueductal gray punishment, septal lesions and the mode of action of minor tranquilizers. Pharmacology Biochemistry and Behavior, 1980, 12, 41-45.	2.9	38
102	Median raphe stimulation, hippocampal theta rhythm and threat-induced behavioral inhibition. Physiology and Behavior, 1980, 25, 253-261.	2.1	74
103	Effect of amphetamine on nondiscriminated key-pecking avoidance in pigeons. Psychopharmacology, 1979, 61, 91-96.	3.1	1
104	Effect of intracerebroventricular bradykinin, angiotensin II, and substance P on multiple fixed-interval fixed-ratio responding in rabbits. Psychopharmacology, 1978, 57, 89-95.	3.1	16
105	Role of the periaqueductal gray substance in the antianxiety action of benzodiazepines. Pharmacology Biochemistry and Behavior, 1978, 9, 287-295.	2.9	115
106	Behavioral inhibition induced by electrical stimulation of the median raphe nucleus of the rat. Physiology and Behavior, 1978, 21, 477-484.	2.1	136
107	Role played by the adenylcyclase-cAMP system of the rat septal area on Na+, K+ and water renal excretion. Pharmacology Biochemistry and Behavior, 1977, 7, 93-97.	2.9	4
108	Effect of tryptamine antagonists on self-stimulation. Psychopharmacology, 1977, 52, 87-92.	3.1	11

#	Article	IF	CITATIONS
109	The role of central muscarinic and nicotinic receptors in the regulation of sodium and potassium renal excretion. General Pharmacology, 1976, 7, 145-148.	0.7	17
110	On the mechanism of the hypertensive action of intraseptal bradykinin in the rat. Neuropharmacology, 1976, 15, 713-717.	4.1	22
111	Effect of cyproheptadine and combinations of cyproheptadine and amphetamine on intermittently reinforced lever-pressing in rats. Psychopharmacology, 1976, 50, 65-71.	3.1	28
112	Influence of response topography on the effect of apomorphine and amphetamine on operant behavior of pigeons. Psychopharmacology, 1975, 41, 127-132.	3.1	15
113	Effect of intracerebroventricular bradykinin and related peptides on rabbit operant behavior. Journal of Pharmacology and Experimental Therapeutics, 1975, 193, 1-10.	2.5	37
114	Antagonism of the dipsogenic action of intraseptal angiotensin II in the rat. Pharmacology Biochemistry and Behavior, 1974, 2, 597-602.	2.9	20
115	Central mechanisms of the hypertensive action of intraventricular bradykinin in the unanaesthetized rat. Neuropharmacology, 1974, 13, 65-75.	4.1	93
116	Tryptamine antagonists and punished behavior. Journal of Pharmacology and Experimental Therapeutics, 1974, 189, 344-50.	2.5	59
117	Lever-pressing behavior caused by intraseptal angiotensin II in water satiated rats. Pharmacology Biochemistry and Behavior, 1973, 1, 357-359.	2.9	20
118	NONDISCRIMINATED AVOIDANCE OF SHOCK BY PIGEONS PECKING A KEY1. Journal of the Experimental Analysis of Behavior, 1973, 19, 211-218.	1.1	16
119	Comparison between the effects of apomorphine and amphetamine on operant behavior. European Journal of Pharmacology, 1972, 18, 159-165.	3.5	26
120	Effects of amphetamine on choice behavior of pigeons. Psychopharmacology, 1972, 26, 395-400.	3.1	15
121	Antinociceptive action of intraventricular bradykinin. Neuropharmacology, 1971, 10, 725-731.	4.1	51
122	Tryptaminergic mechanisms in punished and nonpunished behavior. Journal of Pharmacology and Experimental Therapeutics, 1970, 173, 277-83.	2.5	132
123	Subcellular distribution and properties of the bradykinin inactivation system in rabbit brain homogenates. Biochemical Pharmacology, 1969, 18, 548-549.	4.4	53
124	Behavioural and somatic effects of bradykinin injected into the cerebral ventricles of unanaesthetized rabbits. British Journal of Pharmacology, 1969, 37, 723-732.	5.4	67
125	Effect of reserpine and alpha-methyl-tyrosine on morphine analgesia. International Journal of Neuropharmacology, 1968, 7, 283-292.	1.2	52
126	Potentiation of the cerebral vascular action of bradykinin by the â€~bradykinin potentiating factor' (BPF) in the dog. Experientia, 1965, 21, 607-608.	1.2	9

#	Article	IF	CITATIONS
127	Role played by catechol and indolamines in the central actions of reserpine after monoaminoxidase inhibition. International Journal of Neuropharmacology, 1965, 4, 17-IN1.	1.2	19