
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2752006/publications.pdf Version: 2024-02-01



**ΝΙΕΤΜΑΡ ΚΔ1/117** 

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Physiological mechanisms of stress-induced evolution. Journal of Experimental Biology, 2022, 225, .                                                                                                                                                              | 1.7 | 14        |
| 2  | Prediction and Experimental Validation of a New Salinity-Responsive Cis-Regulatory Element (CRE) in a<br>Tilapia Cell Line. Life, 2022, 12, 787.                                                                                                                 | 2.4 | 0         |
| 3  | Proteomic changes associated with predatorâ€induced morphological defences in oysters. Molecular<br>Ecology, 2022, 31, 4254-4270.                                                                                                                                | 3.9 | 1         |
| 4  | An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters. Scientific Reports, 2021, 11, 7854.                                                                                                             | 3.3 | 12        |
| 5  | A dataâ€independent acquisition (DIA) assay library for quantitation of environmental effects on the kidney proteome of <i>Oreochromis niloticus</i> . Molecular Ecology Resources, 2021, 21, 2486-2503.                                                         | 4.8 | 9         |
| 6  | Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of<br>Oreochromis niloticus modulate epithelial cell turnover. Genomics, 2021, 113, 3235-3249.                                                                             | 2.9 | 11        |
| 7  | Defining biological stress and stress responses based on principles of physics. Journal of Experimental<br>Zoology Part A: Ecological and Integrative Physiology, 2020, 333, 350-358.                                                                            | 1.9 | 38        |
| 8  | An osmolality/salinity-responsive enhancer 1 (OSRE1) in intron 1 promotes salinity induction of tilapia glutamine synthetase. Scientific Reports, 2020, 10, 12103.                                                                                               | 3.3 | 9         |
| 9  | Proteomics of Osmoregulatory Responses in Threespine Stickleback Gills. Integrative and Comparative<br>Biology, 2020, 60, 304-317.                                                                                                                               | 2.0 | 8         |
| 10 | Introduction to the special issue: Comparative biology of cellular stress responses in animals.<br>Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2020, 333, 345-349.                                                            | 1.9 | 10        |
| 11 | The cellular stress response in fish exposed to salinity fluctuations. Journal of Experimental Zoology<br>Part A: Ecological and Integrative Physiology, 2020, 333, 421-435.                                                                                     | 1.9 | 91        |
| 12 | Evolution of cellular stress response mechanisms. Journal of Experimental Zoology Part A:<br>Ecological and Integrative Physiology, 2020, 333, 359-378.                                                                                                          | 1.9 | 63        |
| 13 | Identification of key proteins involved in stickleback environmental adaptation with system-level analysis. Physiological Genomics, 2020, 52, 531-548.                                                                                                           | 2.3 | 2         |
| 14 | Early-life exposure to the endocrine disruptor 17-α-ethinylestradiol induces delayed effects in adult<br>brain, liver and ovotestis proteomes of a self-fertilizing fish. Journal of Proteomics, 2019, 194, 112-124.                                             | 2.4 | 18        |
| 15 | Diversity of resistance mechanisms in carbapenem-resistant Enterobacteriaceae at a health care system in Northern California, from 2013 to 2016. Diagnostic Microbiology and Infectious Disease, 2019, 93, 250-257.                                              | 1.8 | 52        |
| 16 | Development of a Gill Assay Library for Ecological Proteomics of Threespine Sticklebacks<br>(Gasterosteus aculeatus). Molecular and Cellular Proteomics, 2018, 17, 2146-2163.                                                                                    | 3.8 | 22        |
| 17 | Contrasting seasonal and aseasonal environments across stages of the annual cycle in the rufousâ€collared sparrow, <i>Zonotrichia capensis</i> : Differences in endocrine function, proteome and body condition. Journal of Animal Ecology, 2018, 87, 1364-1382. | 2.8 | 4         |
| 18 | Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in<br>euryhaline fish. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, E2729-E2738.                                    | 7.1 | 24        |

| #  | Article                                                                                                                                                                                                    | IF         | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 19 | Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. Journal of Experimental Biology, 2017, 220, 3621-3631.                                                      | 1.7        | 25            |
| 20 | Tgm1-like transglutaminases in tilapia (Oreochromis mossambicus). PLoS ONE, 2017, 12, e0177016.                                                                                                            | 2.5        | 8             |
| 21 | Population-specific renal proteomes of marine and freshwater three-spined sticklebacks. Journal of Proteomics, 2016, 135, 112-131.                                                                         | 2.4        | 14            |
| 22 | Populationâ€specific plasma proteomes of marine and freshwater threeâ€spined sticklebacks<br>( <i>Gasterosteus aculeatus</i> ). Proteomics, 2015, 15, 3980-3992.                                           | 2.2        | 15            |
| 23 | Physiological mechanisms used by fish to cope with salinity stress. Journal of Experimental Biology, 2015, 218, 1907-1914.                                                                                 | 1.7        | 265           |
| 24 | Alterations in the proteome of the respiratory tract in response to single and multiple exposures to naphthalene. Proteomics, 2015, 15, 2655-2668.                                                         | 2.2        | 6             |
| 25 | Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.<br>PLoS ONE, 2015, 10, e0123212.                                                                       | 2.5        | 12            |
| 26 | Sublethal Effects of CuO Nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) Are<br>Modulated by Environmental Salinity. PLoS ONE, 2014, 9, e88723.                                              | 2.5        | 45            |
| 27 | Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis) Tj ETQq1 1 0.7843                                                                                                | 14.rgBT /C | Dverlock 10 T |
| 28 | The Physiological Responses of Green Sturgeon ( <i>Acipenser medirostris</i> ) to Potential Global<br>Climate Change Stressors. Physiological and Biochemical Zoology, 2014, 87, 456-463.                  | 1.5        | 9             |
| 29 | Osmotic regulation and tissue localization of the <i>myo</i> â€inositol biosynthesis pathway in tilapia<br>( <i>Oreochromis mossambicus</i> ) larvae. Journal of Experimental Zoology, 2014, 321, 457-466. | 1.2        | 17            |
| 30 | New Frontiers for Organismal Biology. BioScience, 2013, 63, 464-471.                                                                                                                                       | 4.9        | 30            |
| 31 | Salinity-induced activation of the <i>myo</i> -inositol biosynthesis pathway in tilapia gill epithelium.<br>Journal of Experimental Biology, 2013, 216, 4626-38.                                           | 1.7        | 28            |
| 32 | Tilapia ( <i>Oreochromis mossambicus</i> ) brain cells respond to hyperosmotic challenge by inducing <i>myo</i> -inositol biosynthesis. Journal of Experimental Biology, 2013, 216, 4615-25.               | 1.7        | 29            |
| 33 | Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress.<br>Molecular and Cellular Proteomics, 2013, 12, 3962-3975.                                          | 3.8        | 58            |
| 34 | Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal Populations. Applied and Environmental<br>Microbiology, 2012, 78, 6153-6160.                                                                   | 3.1        | 87            |
| 35 | The Combinatorial Nature of Osmosensing in Fishes. Physiology, 2012, 27, 259-275.                                                                                                                          | 3.1        | 78            |
|    |                                                                                                                                                                                                            |            |               |

0.8 12

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The proteomic response of sea squirts (genus Ciona) to acute heat stress: A global perspective on the thermal stability of proteins. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2011, 6, 322-334.                                          | 1.0  | 35        |
| 38 | A novel GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in euryhaline tilapia.<br>Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 439-445.                                                                                             | 2.4  | 14        |
| 39 | The Ecoresponsive Genome of <i>Daphnia pulex</i> . Science, 2011, 331, 555-561.                                                                                                                                                                                          | 12.6 | 1,086     |
| 40 | A proteomic analysis of green and white sturgeon larvae exposed to heat stress and selenium. Science of the Total Environment, 2010, 408, 3176-3188.                                                                                                                     | 8.0  | 53        |
| 41 | Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia<br>(Oreochromis mossambicus). Comparative Biochemistry and Physiology Part A, Molecular &<br>Integrative Physiology, 2010, 157, 260-265.                         | 1.8  | 84        |
| 42 | Compensatory proteome adjustments imply tissue-specific structural and metabolic reorganization following episodic hypoxia or anoxia in the epaulette shark (Hemiscyllium ocellatum). Physiological Genomics, 2010, 42, 93-114.                                          | 2.3  | 42        |
| 43 | A novel tilapia prolactin receptor is functionally distinct from its paralog. Journal of Experimental<br>Biology, 2009, 212, 2007-2015.                                                                                                                                  | 1.7  | 53        |
| 44 | Salinity stress results in rapid cell cycle changes of tilapia ( <i>Oreochromis mossambicus</i> ) gill epithelial cells. Journal of Experimental Zoology, 2009, 311A, 80-90.                                                                                             | 1.2  | 20        |
| 45 | Osmo- and ionoregulatory responses of green sturgeon (Acipenser medirostris) to salinity<br>acclimation. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental<br>Physiology, 2009, 179, 383-390.                                                | 1.5  | 54        |
| 46 | Prolonged apoptosis in mitochondria-rich cells of tilapia (Oreochromis mossambicus) exposed to<br>elevated salinity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental<br>Physiology, 2009, 179, 535-542.                                    | 1.5  | 30        |
| 47 | Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon. Journal of<br>Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 903-920.                                                                 | 1.5  | 47        |
| 48 | Morphology of the rectal gland of the spiny dogfish (Squalus acanthias) shark in response to feeding.<br>Canadian Journal of Zoology, 2009, 87, 440-452.                                                                                                                 | 1.0  | 12        |
| 49 | Salinity-dependent changes in Na+/K+-ATPase content of mitochondria-rich cells contribute to<br>differences in thermal tolerance of Mozambique tilapia. Journal of Comparative Physiology B:<br>Biochemical, Systemic, and Environmental Physiology, 2008, 178, 249-256. | 1.5  | 45        |
| 50 | Natural feeding influences protein expression in the dogfish shark rectal gland: A proteomic analysis.<br>Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2008, 3, 118-127.                                                                     | 1.0  | 16        |
| 51 | <i>In Vitro</i> Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in<br>Bioassay Screens: Receptor-Based Bioassay Screens. Environmental Health Perspectives, 2008, 116,<br>1203-1210.                                                  | 6.0  | 312       |
| 52 | Functional genomics and proteomics of the cellular osmotic stress response in `non-model'<br>organisms. Journal of Experimental Biology, 2007, 210, 1593-1601.                                                                                                           | 1.7  | 78        |
| 53 | Evaluation of Cytotoxicity Attributed to Thimerosal on Murine and Human Kidney Cells. Journal of<br>Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 2092-2095.                                                                                   | 2.3  | 7         |
| 54 | Specific TSC22 domain transcripts are hypertonically induced and alternatively spliced to protect mouse kidney cells during osmotic stress. FEBS Journal, 2007, 274, 109-124.                                                                                            | 4.7  | 53        |

DIETMAR KüLTZ

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Osmotic stress sensing and signaling in animals. FEBS Journal, 2007, 274, 5781-5781.                                                                                                                                                             | 4.7  | 21        |
| 56 | Osmotic stress sensing and signaling in fishes. FEBS Journal, 2007, 274, 5790-5798.                                                                                                                                                              | 4.7  | 173       |
| 57 | Proteomic identification of processes and pathways characteristic of osmoregulatory tissues in spiny<br>dogfish shark (Squalus acanthias). Comparative Biochemistry and Physiology Part D: Genomics and<br>Proteomics, 2006, 1, 328-343.         | 1.0  | 16        |
| 58 | Identification and pathway analysis of immediate hyperosmotic stress responsive molecular<br>mechanisms in tilapia (Oreochromis mossambicus) gill. Comparative Biochemistry and Physiology Part<br>D: Genomics and Proteomics, 2006, 1, 344-356. | 1.0  | 44        |
| 59 | Constitutive and inducible stress proteins dominate the proteome of the murine inner medullary<br>collecting duct-3 (mIMCD3) cell line. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006,<br>1764, 1007-1020.                       | 2.3  | 25        |
| 60 | Regulation of osmotic stress transcription factor 1 (Ostf1) in tilapia(Oreochromis mossambicus) gill epithelium during salinity stress. Journal of Experimental Biology, 2006, 209, 3257-3265.                                                   | 1.7  | 57        |
| 61 | Ultrasound detection and characterization of polycystic kidney disease in a mouse model.<br>Comparative Medicine, 2006, 56, 215-21.                                                                                                              | 1.0  | 5         |
| 62 | MOLECULAR AND EVOLUTIONARY BASIS OF THE CELLULAR STRESS RESPONSE. Annual Review of Physiology, 2005, 67, 225-257.                                                                                                                                | 13.1 | 1,247     |
| 63 | DNA damage signals facilitate osmotic stress adaptation. American Journal of Physiology - Renal<br>Physiology, 2005, 289, F504-F505.                                                                                                             | 2.7  | 29        |
| 64 | Nek8 Mutation Causes Overexpression of Galectin-1, Sorcin, and Vimentin and Accumulation of the<br>Major Urinary Protein in Renal Cysts of jck Mice. Molecular and Cellular Proteomics, 2005, 4,<br>1009-1018.                                   | 3.8  | 43        |
| 65 | Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in<br>gill cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,<br>927-932.                          | 7.1  | 99        |
| 66 | Laser scanning cytometry and tissue microarray analysis of salinity effects on killifish chloride cells.<br>Journal of Experimental Biology, 2004, 207, 1729-1739.                                                                               | 1.7  | 16        |
| 67 | Gadd45 Proteins Induce G2/M Arrest and Modulate Apoptosis in Kidney Cells Exposed to Hyperosmotic<br>Stress. Journal of Biological Chemistry, 2004, 279, 39075-39084.                                                                            | 3.4  | 78        |
| 68 | Hyperosmolality triggers oxidative damage in kidney cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9177-9178.                                                                                | 7.1  | 34        |
| 69 | Hypertonicity and TonEBP promote development of the renal concentrating system. American Journal of Physiology - Renal Physiology, 2004, 287, F876-F877.                                                                                         | 2.7  | 12        |
| 70 | TeleostFh14-3-3a protein protects xenopus oocytes from hyperosmolality. Journal of Experimental<br>Zoology Part A, Comparative Experimental Biology, 2003, 299A, 103-109.                                                                        | 1.3  | 13        |
| 71 | Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. Journal of Experimental Biology, 2003, 206, 3119-3124.                                                                                               | 1.7  | 292       |
| 72 | Three GADD45 isoforms contribute to hypertonic stress phenotype of murine renal inner medullary cells. American Journal of Physiology - Renal Physiology, 2002, 283, F1020-F1029.                                                                | 2.7  | 25        |

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Mitogen-activated protein kinases are in vivo transducers of osmosensory signals in fish gill cells.<br>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 129, 821-829.                                                                | 1.6  | 103       |
| 74 | Cellular osmoregulation: beyond ion transport and cell volume. Zoology, 2001, 104, 198-208.                                                                                                                                                                                | 1.2  | 29        |
| 75 | Maintenance of genomic integrity in mammalian kidney cells exposed to hyperosmotic stress.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 130,<br>421-428.                                                                   | 1.8  | 41        |
| 76 | Evolution of Osmosensory MAP Kinase Signaling Pathways. American Zoologist, 2001, 41, 743-757.                                                                                                                                                                             | 0.7  | 4         |
| 77 | Protection of Renal Inner Medullary Epithelial Cells from Apoptosis by Hypertonic Stress-induced p53<br>Activation. Journal of Biological Chemistry, 2000, 275, 18243-18247.                                                                                               | 3.4  | 99        |
| 78 | Osmotic regulation of DNA activity and the cell cycle. Cell and Molecular Response To Stress, 2000, 1, 157-179.                                                                                                                                                            | 0.4  | 14        |
| 79 | Phylogenetic and Functional Classification of Mitogen- and Stress-Activated Protein Kinases. Journal of Molecular Evolution, 1998, 46, 571-588.                                                                                                                            | 1.8  | 181       |
| 80 | Hyperosmolality Causes Growth Arrest of Murine Kidney Cells. Journal of Biological Chemistry, 1998, 273, 13645-13651.                                                                                                                                                      | 3.4  | 179       |
| 81 | Distinct Regulation of Osmoprotective Genes in Yeast and Mammals. Journal of Biological Chemistry, 1997, 272, 13165-13170.                                                                                                                                                 | 3.4  | 91        |
| 82 | REGULATION OF GENE EXPRESSION BY HYPERTONICITY. Annual Review of Physiology, 1997, 59, 437-455.                                                                                                                                                                            | 13.1 | 355       |
| 83 | Osmotic regulation of gene expression. FASEB Journal, 1996, 10, 1598-1606.                                                                                                                                                                                                 | 0.5  | 158       |
| 84 | Mitochondria-rich (MR) cells and the activities of the and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 293-301. | 0.2  | 45        |
| 85 | Proteomic Analysis of the Renal Inner Medulla and Collecting Ducts. , 0, , 39-51.                                                                                                                                                                                          |      | 0         |