Veronica Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2751444/publications.pdf

Version: 2024-02-01

840776 1058476 14 415 11 14 citations h-index g-index papers 20 20 20 494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Amikacin potentiator activity of zinc complexed to a pyrithione derivative with enhanced solubility. Scientific Reports, 2022, 12, 285.	3.3	2
2	Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in Acinetobacter baumannii. Scientific Reports, 2021, 11, 4737.	3.3	16
3	A novel mechanosensitive channel controls osmoregulation, differentiation, and infectivity in Trypanosoma cruzi. ELife, $2021,10,.$	6.0	12
4	Aminoglycoside $6\hat{a}\in^2$ -N-acetyltransferase Type Ib [AAC($6\hat{a}\in^2$)-Ib]-Mediated Aminoglycoside Resistance: Phenotypic Conversion to Susceptibility by Silver Ions. Antibiotics, 2021, 10, 29.	3.7	9
5	Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in Acinetobacter baumannii to Enhance Cytotoxicity and Immune Evasion. Frontiers in Microbiology, 2019, 10, 1581.	3.5	30
6	Restoration of susceptibility to amikacin by 8-hydroxyquinoline analogs complexed to zinc. PLoS ONE, 2019, 14, e0217602.	2.5	18
7	Identification of a small molecule inhibitor of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] using mixture-based combinatorial libraries. International Journal of Antimicrobial Agents, 2018, 51, 752-761.	2.5	17
8	<scp>T</scp> c <scp>P</scp> ho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in <scp><i>T</i></scp> <i>rypanosoma cruziorange of the contraction of the contrac</i>	2.5	27
9	Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of <i>Trypanosoma cruzi</i> . Journal of Cell Science, 2015, 128, 2363-2373.	2.0	27
10	Calcium Entry in Toxoplasma gondii and Its Enhancing Effect of Invasion-linked Traits. Journal of Biological Chemistry, 2014, 289, 19637-19647.	3.4	59
11	Dealing with environmental challenges: Mechanisms of adaptation in Trypanosoma cruzi. Research in Microbiology, 2014, 165, 155-165.	2.1	37
12	New Insights into Roles of Acidocalcisomes and Contractile Vacuole Complex in Osmoregulation in Protists. International Review of Cell and Molecular Biology, 2013, 305, 69-113.	3.2	57
13	Molecular and Electrophysiological Characterization of a Novel Cation Channel of Trypanosoma cruzi. PLoS Pathogens, 2012, 8, e1002750.	4.7	33
14	Identification of Contractile Vacuole Proteins in Trypanosoma cruzi. PLoS ONE, 2011, 6, e18013.	2.5	69