Alessandro Fatica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2750940/publications.pdf

Version: 2024-02-01

64 papers

9,320 citations

35 h-index 62 g-index

67 all docs

67
docs citations

times ranked

67

13559 citing authors

#	Article	IF	CITATIONS
1	Long Non-Coding RNAs in the Cell Fate Determination of Neoplastic Thymic Epithelial Cells. Frontiers in Immunology, 2022, 13, 867181.	4.8	1
2	MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Communications Biology, 2022, 5, .	4.4	8
3	ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biology, 2021, 22, 51.	8.8	71
4	Regulation of Ribosome Function by RNA Modifications in Hematopoietic Development and Leukemia: It Is Not Only a Matter of m6A. International Journal of Molecular Sciences, 2021, 22, 4755.	4.1	4
5	Translational control of polyamine metabolism by CNBP is required for Drosophila locomotor function. ELife, 2021, 10, .	6.0	10
6	METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clinical Epigenetics, 2021, 13, 173.	4.1	21
7	New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia. Cell Death and Disease, 2021, 12, 870.	6.3	25
8	LINC00174 is a novel prognostic factor in thymic epithelial tumors involved in cell migration and lipid metabolism. Cell Death and Disease, 2020, 11, 959.	6.3	27
9	Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation. Cell Death and Disease, 2020, 11, 1045.	6.3	39
10	Modulation of circRNA Metabolism by m6A Modification. Cell Reports, 2020, 31, 107641.	6.4	217
11	Interplay Between N6-Methyladenosine (m6A) and Non-coding RNAs in Cell Development and Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 116.	3.7	97
12	N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 251.	2.8	66
13	The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Research, 2019, 47, 4240-4254.	14.5	32
14	Retinoic acid synergizes with the unfolded protein response and oxidative stress to induce cell death in FLT3-ITD+ AML. Blood Advances, 2019, 3, 4155-4160.	5.2	22
15	Argonaute 2 drives miR-145-5p-dependent gene expression program in breast cancer cells. Cell Death and Disease, 2019, 10, 17.	6.3	28
16	METTL3 regulates WTAP protein homeostasis. Cell Death and Disease, 2018, 9, 796.	6.3	108
17	Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. International Journal of Molecular Sciences, 2018, 19, 570.	4.1	129
18	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecular Sciences, 2018, 19, 2345.	4.1	34

#	Article	IF	CITATIONS
19	Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Molecular Cell, 2017, 66, 22-37.e9.	9.7	1,672
20	Effect of miR-204&211 and RUNX2 control on the fate of human mesenchymal stromal cells. Regenerative Medicine Research, 2017, 5, 2.	2.5	7
21	The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA. Oncotarget, 2016, 7, 60155-60168.	1.8	35
22	Circulating Noncoding RNAs as Clinical Biomarkers. , 2016, , 239-258.		4
23	Non-coding RNAs in muscle differentiation and musculoskeletal disease. Journal of Clinical Investigation, 2016, 126, 2021-2030.	8.2	75
24	Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia. Frontiers in Medicine, 2015, 2, 23.	2.6	76
25	C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget, 2015, 6, 18534-18544.	1.8	70
26	CEBPA-regulated lncRNAs, new players in the study of acute myeloid leukemia. Journal of Hematology and Oncology, 2014, 7, 69.	17.0	13
27	Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews Genetics, 2014, 15, 7-21.	16.3	2,616
28	The Role of Long Noncoding RNAs in the Epigenetic Control of Gene Expression. ChemMedChem, 2014, 9, 505-510.	3.2	59
29	A Feedforward Regulatory Loop between HuR and the Long Noncoding RNA linc-MD1 Controls Early Phases of Myogenesis. Molecular Cell, 2014, 53, 506-514.	9.7	202
30	MicroRNA-Regulated Pathways in Hematological Malignancies: How to Avoid Cells Playing Out of Tune. International Journal of Molecular Sciences, 2013, 14, 20930-20953.	4.1	22
31	Argonaute 2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells. Cell Death and Disease, 2013, 4, e926-e926.	6.3	33
32	Noncoding RNAs in Acute Myeloid Leukemia: From Key Regulators to Clinical Players. Scientifica, 2012, 2012, 1-10.	1.7	10
33	The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death and Disease, 2012, 3, e413-e413.	6.3	67
34	Identity and ranking of colonic mesenchymal stromal cells. Journal of Cellular Physiology, 2012, 227, 3291-3300.	4.1	27
35	Critical Role of c-Myc in Acute Myeloid Leukemia Involving Direct Regulation of miR-26a and Histone Methyltransferase EZH2. Genes and Cancer, 2011, 2, 585-592.	1.9	87
36	Gene expression profiling identifies a subset of adult T-cell acute lymphoblastic leukemia with myeloid-like gene features and over-expression of miR-223. Haematologica, 2010, 95, 1114-1121.	3.5	45

#	Article	IF	CITATIONS
37	Heterochromatin Protein 1 (HP1a) Positively Regulates Euchromatic Gene Expression through RNA Transcript Association and Interaction with hnRNPs in Drosophila. PLoS Genetics, 2009, 5, e1000670.	3.5	128
38	A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells. Leukemia, 2009, 23, 856-862.	7.2	82
39	Role of microRNAs in hematological malignancies. Expert Review of Hematology, 2009, 2, 415-423.	2.2	3
40	NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls \hat{l}^2 -globin and G-CSF receptor expression. Blood, 2009, 114, 1753-1763.	1.4	57
41	Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Experimental Hematology, 2008, 36, 1035-1046.	0.4	240
42	Role of microRNAs in myeloid differentiation. Biochemical Society Transactions, 2008, 36, 1201-1205.	3.4	19
43	Yeast Rrp14p is required for ribosomal subunit synthesis and for correct positioning of the mitotic spindle during mitosis. Nucleic Acids Research, 2007, 35, 1354-1366.	14.5	39
44	The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19849-19854.	7.1	266
45	Microarray detection of novel nuclear RNA substrates for the exosome. Yeast, 2006, 23, 439-454.	1.7	67
46	MicroRNAs and Hematopoietic Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 205-210.	1.1	15
47	Rrp15p, a novel component of pre-ribosomal particles required for 60S ribosome subunit maturation. Rna, 2005, 11, 495-502.	3.5	26
48	The Cotranscriptional Assembly of snoRNPs Controls the Biosynthesis of H/ACA snoRNAs in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2005, 25, 5396-5403.	2.3	76
49	A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis. Cell, 2005, 123, 819-831.	28.9	935
50	PIN domain of Nob1p is required for D-site cleavage in 20S pre-rRNA. Rna, 2004, 10, 1698-1701.	3.5	110
51	Insights into the structure and function of a guide RNP. Nature Structural and Molecular Biology, 2003, 10, 237-239.	8.2	24
52	Nob1p Is Required for Cleavage of the $3\hat{a} \in \mathbb{Z}$ End of 18S rRNA. Molecular and Cellular Biology, 2003, 23, 1798-1807.	2.3	144
53	Cic1p/Nsa3p is required for synthesis and nuclear export of 60S ribosomal subunits. Rna, 2003, 9, 1431-1436.	3.5	35
54	Functional Analysis of Yeast snoRNA and snRNA 3′-End Formation Mediated by Uncoupling of Cleavage and Polyadenylation. Molecular and Cellular Biology, 2002, 22, 1379-1389.	2.3	67

ALESSANDRO FATICA

#	Article	lF	CITATION
55	Purified Box C/D snoRNPs Are Able To Reproduce Site-Specific 2′-O-Methylation of Target RNA In Vitro. Molecular and Cellular Biology, 2002, 22, 6663-6668.	2.3	84
56	Ssf1p Prevents Premature Processing of an Early Pre-60S Ribosomal Particle. Molecular Cell, 2002, 9, 341-351.	9.7	167
57	Making ribosomes. Current Opinion in Cell Biology, 2002, 14, 313-318.	5 . 4	455
58	Naf1 p is a box H/ACA snoRNP assembly factor. Rna, 2002, 8, 1502-14.	3.5	65
59	Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO Journal, 2001, 20, 6856-6865.	7.8	51
60	Fibrillarin binds directly and specifically to U16 box C/D snoRNA. Rna, 2000, 6, 88-95.	3.5	38
61	In Vivo Identification of Nuclear Factors Interacting with the Conserved Elements of Box C/D Small Nucleolar RNAs. Molecular and Cellular Biology, 1998, 18, 1023-1028.	2.3	47
62	A Novel Mn++-Dependent Ribonuclease That Functions in U16 SnoRNA Processing inX.Laevis Biochemical and Biophysical Research Communications, 1997, 233, 514-517.	2.1	15
63	Biosynthesis of U16 snoRNA in Early Development ofX. laevis. Biochemical and Biophysical Research Communications, 1997, 241, 486-490.	2.1	0
64	Self-cleaving motifs are found in close proximity to the sites utilized for U16 snoRNA processing.	2.2	6