Hans Niemantsverdriet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2750623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017, 58, 1-35.	31.2	506
2	Basic Reaction Steps in the Sulfidation of Crystalline MoO3to MoS2, As Studied by X-ray Photoelectron and Infrared Emission Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 14144-14150.	2.9	433
3	Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, x-ray diffraction, carbon content determination, and reaction kinetic measurements. The Journal of Physical Chemistry, 1980, 84, 3363-3370.	2.9	381
4	Surface Science Approach to Modeling Supported Catalysts. Catalysis Reviews - Science and Engineering, 1997, 39, 77-168.	12.9	374
5	Structure of Amorphous MoS3. The Journal of Physical Chemistry, 1995, 99, 9194-9200.	2.9	364
6	Thermal desorption analysis: Comparative test of ten commonly applied procedures. Surface Science, 1990, 233, 355-365.	1.9	354
7	Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catalysis Today, 2010, 154, 271-282.	4.4	301
8	Sulfidation Study of Molybdenum Oxide Using MoO3/SiO2/Si(100) Model Catalysts and Mo-IV3-Sulfur Cluster Compounds. Journal of Catalysis, 1995, 157, 698-705.	6.2	208
9	Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions. Applied Catalysis A: General, 2009, 354, 102-110.	4.3	206
10	Relationship between Iron Carbide Phases (ε-Fe ₂ C, Fe ₇ C ₃ , and) Tj ETQq Catalysts. ACS Catalysis, 2018, 8, 3304-3316.	0 0 0 rgBT 11.2	/Overlock 10 200
11	Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation?. Catalysis Today, 2007, 123, 293-302.	4.4	189
12	Chemical Kinetics and Catalysis. Fundamental and Applied Catalysis, 1995, , .	0.9	184
13	Cellulose Model SurfacesSimplified Preparation by Spin Coating and Characterization by X-ray Photoelectron Spectroscopy, Infrared Spectroscopy, and Atomic Force Microscopy. Langmuir, 2003, 19, 5735-5741.	3.5	176
14	The conversion of di-Ï f bonded ethylene to ethylidyne on Pt(111) monitored with sum frequency generation: evidence for an ethylidene (or ethyl) intermediate. Surface Science, 1995, 328, 111-118.	1.9	172
15	The dissociation kinetics of NO on Rh(111) as studied by temperature programmed static secondary ion mass spectrometry and desorption. Journal of Chemical Physics, 1994, 101, 10052-10063.	3.0	159
16	On the time-dependent behavior of iron catalysts in Fischer-Tropsch synthesis. Journal of Catalysis, 1981, 72, 385-388.	6.2	155
17	Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance. Journal of Catalysis, 2012, 289, 42-52.	6.2	147
18	Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4. Nature Communications, 2018, 9, 60.	12.8	143

#	Article	IF	CITATIONS
19	Correlation between Hydrodesulfurization Activity and Order of Ni and Mo Sulfidation in Planar Silica-Supported NiMo Catalysts: The Influence of Chelating Agents. Journal of Catalysis, 2001, 197, 26-33.	6.2	141
20	Characterization of polymer solar cells by TOF-SIMS depth profiling. Applied Surface Science, 2003, 203-204, 547-550.	6.1	140
21	Sulfidation mechanism by molybdenum catalysts supported on silica/silicon(100) model support studied by surface spectroscopy. The Journal of Physical Chemistry, 1993, 97, 6477-6483.	2.9	130
22	XANES study of the susceptibility of nano-sized cobalt crystallites to oxidation during realistic Fischer–Tropsch synthesis. Applied Catalysis A: General, 2006, 312, 12-19.	4.3	128
23	Structure and catalytic properties of molybdenum oxide catalysts supported on zirconia. Journal of Catalysis, 2004, 226, 283-291.	6.2	124
24	Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface. Catalysis Letters, 2009, 133, 257-261.	2.6	116
25	The role of electron donors on lateral surfaces of MgCl2-supported Ziegler–Natta catalysts: Observation by AFM and SEM. Journal of Catalysis, 2008, 257, 81-86.	6.2	113
26	Sulfidation and Thiophene Hydrodesulfurization Activity of Nickel Tungsten Sulfide Model Catalysts, Prepared without and with Chelating Agents. Journal of Catalysis, 2000, 196, 180-189.	6.2	112
27	Low Surface Energy Polymeric Films from Novel Fluorinated Blocked Isocyanates. Macromolecules, 2004, 37, 408-413.	4.8	110
28	A DFT Study of the Adsorption and Dissociation of CO on Fe(100): Influence of Surface Coverage on the Nature of Accessible Adsorption States. ChemPhysChem, 2005, 6, 254-260.	2.1	106
29	Preparation and characterisation of spherical Co/SiO2 model catalysts with well-defined nano-sized cobalt crystallites and a comparison of their stability against oxidation with water. Journal of Catalysis, 2006, 239, 326-339.	6.2	103
30	In situ, Cr K-edge XAS study on the Phillips catalyst: activation and ethylene polymerization. Journal of Catalysis, 2005, 230, 98-108.	6.2	102
31	Surface roughness effects in quantitative XPS: magic angle for determining overlayer thickness. Applied Surface Science, 1997, 115, 342-346.	6.1	97
32	Surface Science Model of a Working Cobalt-Promoted Molybdenum Sulfide Hydrodesulfurization Catalyst:Â Characterization and Reactivity. The Journal of Physical Chemistry, 1996, 100, 17722-17724.	2.9	96
33	A comparison of cobalt and iron based slurry phase Fischer–Tropsch synthesis. Catalysis Today, 2013, 215, 112-120.	4.4	95
34	Structure sensitivity in the CO oxidation on rhodium: Effect of adsorbate coverages on oxidation kinetics on Rh(100) and Rh(111). Journal of Chemical Physics, 2000, 113, 5457.	3.0	93
35	Hydrogen spillover in the Fischer–Tropsch synthesis: An analysis of platinum as a promoter for cobalt–alumina catalysts. Catalysis Today, 2016, 261, 17-27.	4.4	91
36	Deposition of inorganic salts from solution on flat substrates by spin-coating: theory, quantification and application to model catalysts. Applied Surface Science, 1995, 84, 339-346.	6.1	89

#	Article	IF	CITATIONS
37	Fischer–Tropsch Synthesis: Catalysts and Chemistry. , 2013, , 525-557.		89
38	Thermal desorption of strained monoatomic Ag and Au layers from Ru(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 875-878.	2.1	88
39	Alumina-Supported Cu–Ag Catalysts for Ammonia Oxidation to Nitrogen at Low Temperature. Journal of Catalysis, 2002, 206, 60-70.	6.2	86
40	Small-particle effects in Moessbauer spectra of a carbon-supported iron catalyst. The Journal of Physical Chemistry, 1985, 89, 67-72.	2.9	85
41	Insight into the formation of the active phases in supported NiW hydrotreating catalysts. Applied Catalysis A: General, 2007, 322, 16-32.	4.3	85
42	Influence of Support-Interaction on the Sulfidation Behavior and Hydrodesulfurization Activity of Al2O3-Supported W, CoW, and NiW Model Catalysts. Journal of Physical Chemistry B, 2002, 106, 5897-5906.	2.6	82
43	Atomic and Polymeric Carbon on Co(0001): Surface Reconstruction, Graphene Formation, and Catalyst Poisoning. Journal of Physical Chemistry C, 2012, 116, 11575-11583.	3.1	82
44	Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt. Journal of Catalysis, 2016, 342, 1-16.	6.2	80
45	Novel method for preparing cellulose model surfaces by spin coating. Polymer, 2003, 44, 3621-3625.	3.8	79
46	Solid Base Bi ₂₄ O ₃₁ Br ₁₀ (OH) _δ with Active Lattice Oxygen for the Efficient Photoâ€Oxidation of Primary Alcohols to Aldehydes. Angewandte Chemie - International Edition, 2019, 58, 6265-6270.	13.8	78
47	Bonding of Supported Chromium during Thermal Activation of the CrOx/SiO2(Phillips) Ethylene Polymerization Catalyst. Journal of Physical Chemistry B, 2001, 105, 3073-3078.	2.6	77
48	DFT study of CO and NO adsorption on low index and stepped surfaces of gold. Surface Science, 2009, 603, 2734-2741.	1.9	77
49	Working Surface Science Model for the Phillips Ethylene Polymerization Catalyst:  Preparation and Testing. Journal of Physical Chemistry B, 1997, 101, 8559-8563.	2.6	76
50	Elementary steps in Fischer–Tropsch synthesis: CO bond scission, CO oxidation and surface carbiding on Co(0001). Surface Science, 2016, 648, 60-66.	1.9	76
51	The impact of cobalt aluminate formation on the deactivation of cobalt-based Fischer–Tropsch synthesis catalysts. Catalysis Today, 2011, 171, 192-200.	4.4	75
52	Relating adatom emission to improved durability of Pt–Pd diesel oxidation catalysts. Journal of Catalysis, 2015, 328, 151-164.	6.2	75
53	Characterization of surface phases in bimetallic FeRh/SiO2 catalysts by in situ M�ssbauer spectroscopy at cryogenic temperatures. Journal of Catalysis, 1984, 89, 138-149.	6.2	74
54	CO/Rh(111): Vibrational frequency shifts and lateral interactions in adsorbate layers. Journal of Chemical Physics, 2001, 115, 8209-8216.	3.0	74

#	Article	IF	CITATIONS
55	Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the fischer tropsch reaction. Applied Catalysis, 1982, 2, 273-288.	0.8	70
56	The compensation effect and the manifestation of lateral interactions in thermal desorption spectroscopy. Applied Surface Science, 1988, 31, 211-219.	6.1	69
57	The adsorption of CO on Rh(100): Reflection absorption infrared spectroscopy, low energy electron diffraction, and thermal desorption spectroscopy. Journal of Chemical Physics, 1994, 101, 10126-10133.	3.0	69
58	Title is missing!. Topics in Catalysis, 2000, 13, 99-108.	2.8	69
59	Basic Reaction Steps in the Sulfidation of Crystalline Tungsten Oxides. Journal of Physical Chemistry B, 2002, 106, 3449-3457.	2.6	68
60	Elementary reactions of CO and H2 on C-terminated χ-Fe5C2(0 0 1) surfaces. Journal of Catalysis, 2014, 317, 158-166.	6.2	67
61	The Outermost Atomic Layer of Thin Films of Fluorinated Polymethacrylates. Langmuir, 2004, 20, 6344-6351.	3.5	66
62	The analysis of temperature programmed desorption experiments of systems with lateral interactions; implications of the compensation effect. Surface Science, 2003, 546, 159-169.	1.9	63
63	Promoting Synergy in CoW Sulfide Hydrotreating Catalysts by Chelating Agents. Journal of Catalysis, 2001, 200, 194-196.	6.2	62
64	The interfaces of poly(p-phenylene vinylene) and fullerene derivatives with Al, LiF, and Al/LiF studied by secondary ion mass spectroscopy and x-ray photoelectron spectroscopy: Formation of AlF3 disproved. Journal of Chemical Physics, 2002, 117, 5031-5035.	3.0	61
65	Olivine as tar removal catalyst in biomass gasification: Catalyst dynamics under model conditions. Applied Catalysis B: Environmental, 2013, 130-131, 168-177.	20.2	61
66	Layered Antiferromagnetic Ordering in the Most Active Perovskite Catalysts for the Oxygen Evolution Reaction. ChemCatChem, 2016, 8, 2968-2974.	3.7	61
67	Interaction of small molecules with Au(310): Decomposition of NO. Applied Catalysis A: General, 2005, 291, 93-97.	4.3	60
68	Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Fischer–Tropsch synthesis conditions. Journal of Catalysis, 2015, 328, 123-129.	6.2	60
69	In Situ Surface Oxidation Study of a Planar Co/SiO2/Si(100) Model Catalyst with Nanosized Cobalt Crystallites under Model Fischerâ~Tropsch Synthesis Conditions. Journal of Physical Chemistry B, 2006, 110, 8657-8664.	2.6	59
70	Introducing a new surface science model for Ziegler–Natta catalysts: Preparation, basic characterization and testing. Journal of Catalysis, 2007, 247, 129-136.	6.2	59
71	A surface science model for the Phillips ethylene polymerization catalyst: thermal activation and polymerization activity. Journal of Catalysis, 2004, 223, 134-141.	6.2	58
72	Efficient Solar-Driven Hydrogen Transfer by Bismuth-Based Photocatalyst with Engineered Basic Sites. Journal of the American Chemical Society, 2018, 140, 16711-16719.	13.7	58

#	Article	IF	CITATIONS
73	Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas. ACS Catalysis, 2017, 7, 4867-4875.	11.2	56
74	Characterization and Reactivity of Pd/MgO and Pd/γ-Al2O3 Catalysts in the Selective Hydrogenolysis of CCl2F2â€. Journal of Physical Chemistry B, 2002, 106, 1024-1031.	2.6	55
75	Ethanol Decomposition on Co(0001): Câ^'O Bond Scission on a Close-Packed Cobalt Surface. Journal of Physical Chemistry Letters, 2010, 1, 1767-1770.	4.6	55
76	Direct versus Hydrogenâ€Assisted CO Dissociation on the Fe (100) Surface: a DFT Study. ChemPhysChem, 2012, 13, 89-91.	2.1	55
77	Thermally cured low surface-tension epoxy films. Polymer, 2005, 46, 10531-10537.	3.8	53
78	Fundamental issues on practical Fischer–Tropsch catalysts: How surface science can help. Catalysis Today, 2014, 228, 106-112.	4.4	52
79	Photosystem II Acts as a Spin-Controlled Electron Gate during Oxygen Formation and Evolution. Journal of the American Chemical Society, 2017, 139, 16604-16608.	13.7	52
80	Enhanced CO2 adsorption in nano-ZIF-8 modified by solvent assisted ligand exchange. Microporous and Mesoporous Materials, 2018, 262, 98-105.	4.4	52
81	NiP ₂ : A Story of Two Divergent Polymorphic Multifunctional Materials. Chemistry of Materials, 2019, 31, 3407-3418.	6.7	52
82	Mossbauer studies of ultrafine iron-containing particles on a carbon support. Journal of Physics Condensed Matter, 1992, 4, 6555-6568.	1.8	51
83	Preparation of zirconium oxide on silica and characterization by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, temperature programmed oxidation and infra-red spectroscopy. Applied Catalysis, 1991, 70, 53-71.	0.8	50
84	Polyethylene Formation on a Planar Surface Science Model of a Chromium Oxide Polymerization Catalyst. Journal of Catalysis, 1999, 183, 1-5.	6.2	50
85	Ptâ^'Co/SiO2Bimetallic Planar Model Catalysts for Selective Hydrogenation of Crotonaldehyde. Journal of Physical Chemistry B, 2004, 108, 17905-17914.	2.6	50
86	The Effect of Water on the Stability of Iron Oxide and Iron Carbide Nanoparticles in Hydrogen and Syngas Followed by in Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 7367-7373.	3.1	50
87	A Density Functional Theory Study on the Effect of Zeroâ€Point Energy Corrections on the Methanation Profile on Fe(100). ChemPhysChem, 2012, 13, 1591-1596.	2.1	50
88	Mechanistic Insight into the Interaction Between a Titanium Dioxide Photocatalyst and Pd Cocatalyst for Improved Photocatalytic Performance. ACS Catalysis, 2016, 6, 4239-4247.	11.2	50
89	Thickness determination of uniform overlayers on rough substrates by angle-dependent XPS. Applied Surface Science, 1995, 89, 69-76.	6.1	49
90	Lateral Interactions in the Dissociation Kinetics of NO on Rh(100)â€. Journal of Physical Chemistry B, 2000, 104, 3058-3066.	2.6	49

#	Article	IF	CITATIONS
91	Activation and Deactivation of Gold/Ceria–Zirconia in the Lowâ€Temperature Water–Gas Shift Reaction. Angewandte Chemie - International Edition, 2017, 56, 16037-16041.	13.8	49
92	Ligand effects in rhodium-catalyzed hydroformylation with bisphosphines: steric or electronic?. Catalysis Science and Technology, 2017, 7, 1404-1414.	4.1	48
93	A Mössbauer study of surface effects on iron Fischer-Tropsch catalysts. Applications of Surface Science, 1982, 10, 302-313.	1.0	47
94	Combining density-functional calculations with kinetic models: NO/Rh(111). Journal of Chemical Physics, 2003, 118, 7081-7089.	3.0	47
95	Is there a correlation between catalyst particle size and CNT diameter?. Carbon, 2009, 47, 2002-2013.	10.3	47
96	Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions. Nature Communications, 2020, 11, 750.	12.8	47
97	M�ssbauer and X-ray photoelectron spectroscopic evidence for the structure of supported bimetallic catalysts: FeRu, FeRh, FePd, Felr, and FePt on SiO2. Journal of Catalysis, 1985, 96, 58-71.	6.2	46
98	Surface composition of Pt-Rh alloys; The role of lattice vibrational entropy. Surface Science, 1986, 178, 880-887.	1.9	46
99	A DFT Study of the Adsorption and Dissociation of CO on Sulfur-Precovered Fe(100). Journal of Physical Chemistry B, 2006, 110, 13897-13904.	2.6	46
100	Adsorption of ammonia on the rhodium (111), (100), and stepped (100) surfaces: An ab initio and experimental study. Journal of Chemical Physics, 1999, 111, 8124-8130.	3.0	45
101	Formation of cobalt–molybdenum sulfides in hydrotreating catalysts: a surface science approach. Applied Surface Science, 1999, 144-145, 380-384.	6.1	45
102	Polymerization and Crystallization of Polyethylene on a Flat Model Catalyst. Macromolecules, 1999, 32, 8910-8913.	4.8	45
103	Planar model system for olefin polymerization: the Phillips CrO x /SiO2 catalyst. Topics in Catalysis, 2000, 13, 67-74.	2.8	45
104	A Preparation Method for Well-Defined Crystallites of Mgcl2-Supported Ziegler-Natta Catalysts and their Observation by AFM and SEM. Macromolecular Rapid Communications, 2007, 28, 1466-1471.	3.9	45
105	Reflections on the Fischer-Tropsch synthesis: Mechanistic issues from a surface science perspective. Catalysis Today, 2016, 275, 100-110.	4.4	45
106	Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes. International Journal of Hydrogen Energy, 2017, 42, 10762-10774.	7.1	45
107	The adsorption of NH3 on Rh(111). Surface Science, 1996, 369, 23-35.	1.9	44
108	Chemical looping capabilities of olivine, used as a catalyst in indirect biomass gasification. Applied Catalysis B: Environmental, 2014, 145, 216-222.	20.2	44

#	Article	IF	CITATIONS
109	Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (0 0 1) surface of the iron carbide χ-Fe5C2. Journal of Catalysis, 2015, 325, 9-18.	6.2	44
110	Quantification of lateral repulsion between coadsorbed CO and N on Rh(100) using temperature-programmed desorption, low-energy electron diffraction, and Monte Carlo simulations. Journal of Chemical Physics, 2003, 119, 524-532.	3.0	43
111	In Situ ATR-FTIR Studies on MgCl ₂ -Diisobutyl Phthalate Interactions in Thin Film Ziegler–Natta Catalysts. Langmuir, 2012, 28, 2643-2651.	3.5	43
112	Cu Model Catalyst Dynamics and CO Oxidation Kinetics Studied by Simultaneous in Situ UV–Vis and Mass Spectroscopy. ACS Catalysis, 2016, 6, 2867-2876.	11.2	43
113	Rationally Designed Metal Cocatalyst for Selective Photosynthesis of Bibenzyls via Dehalogenative C–C Homocoupling. ACS Catalysis, 2021, 11, 4338-4348.	11.2	43
114	Catalytic Role of Metal Nanoparticles in Selectivity Control over Photodehydrogenative Coupling of Primary Amines to Imines and Secondary Amines. ACS Catalysis, 2021, 11, 6656-6661.	11.2	43
115	Oxygen Adsorption and Water Formation on Co(0001). Journal of Physical Chemistry C, 2016, 120, 4833-4842.	3.1	42
116	Intrinsic kinetics of thiophene hydrodesulfurization on a sulfided NiMo/SiO2 planar model catalyst. Journal of Catalysis, 2004, 221, 541-548.	6.2	40
117	Iron oxide nanoparticles on flat oxidic surfaces—Introducing a new model catalyst for Fischer–Tropsch catalysis. Catalysis Today, 2010, 154, 142-148.	4.4	39
118	Cobalt Fischer–Tropsch Catalyst Regeneration: The Crucial Role of the Kirkendall Effect for Cobalt Redispersion. Topics in Catalysis, 2011, 54, 811-816.	2.8	39
119	Role of ZnO and CeO _{<i>x</i>} in Cu-Based Model Catalysts in Activation of H ₂ O and CO ₂ Dynamics Studied by in Situ Ultraviolet–Visible and X-ray Photoelectron Spectroscopy. ACS Catalysis, 2016, 6, 7994-8003.	11.2	39
120	Cobalt and cobalt carbide on alumina/NiAl(110) as model catalysts. Catalysis Science and Technology, 2017, 7, 5893-5899.	4.1	39
121	Electronic Modifictions in Supported Palladium Catalysts. Studies in Surface Science and Catalysis, 1994, 84, 909-916.	1.5	38
122	Low surface energy polymeric films from partially fluorinated photocurable solventless liquid oligoesters. Polymer Bulletin, 2001, 47, 321-328.	3.3	38
123	Mössbauer investigation of bimetallic FeRu/SiO2 and FeRh/SiO2 fischer-tropsch catalysts. Journal of Molecular Catalysis, 1984, 25, 285-293.	1.2	37
124	Providing Fundamental and Applied Insights into Fischer–Tropsch Catalysis: Sasol–Eindhoven University of Technology Collaboration. ACS Catalysis, 2016, 6, 3840-3855.	11.2	37
125	TiO2-Supported Mo Model Catalysts: Ti as Promoter for Thiophene HDS?. Catalysis Letters, 2002, 79, 149-155.	2.6	36
126	Preparation of a rhodium catalyst from rhodium trichloride on a flat, conducting alumina support studied with static secondary ion mass spectrometry and monochromatic X-ray photoelectron spectroscopy. Catalysis Letters, 1993, 17, 81-95.	2.6	35

#	Article	IF	CITATIONS
127	Direct Catalytic Route to Superhydrophobic Polyethylene Films. Langmuir, 2006, 22, 7956-7959.	3.5	35
128	The Surface Chemistry of Water on Fe(100): A Density Functional Theory Study. ChemPhysChem, 2012, 13, 1583-1590.	2.1	35
129	Hydrogen spillover in the Fischer–Tropsch synthesis: An analysis of gold as a promoter for cobalt–alumina catalysts. Catalysis Today, 2016, 275, 27-34.	4.4	35
130	Oxygen Evolution Reaction on Perovskite Electrocatalysts with Localized Spins and Orbital Rotation Symmetry. ChemCatChem, 2016, 8, 3762-3768.	3.7	35
131	Structure and catalytic processes of N-containing species on Rh(111) from first principles. Journal of Catalysis, 2005, 232, 179-185.	6.2	33
132	Zeolite NaY-supported gold complexes prepared from Au(CH3)2(C5H7O2): reactivity with carbon monoxide. Catalysis Letters, 2005, 101, 265-274.	2.6	33
133	Adsorption and Dissociation of CO on Body-Centered Cubic Transition Metals and Alloys: Effect of Coverage and Scaling Relations. Journal of Physical Chemistry C, 2009, 113, 11041-11049.	3.1	33
134	Chemistry of O―and Hâ€Containing Species on the (001) Surface of Anatase TiO ₂ : A DFT Study. ChemPhysChem, 2010, 11, 2375-2382.	2.1	33
135	Studying Fischer–Tropsch catalysts using transmission electron microscopy and model systems of nanoparticles on planar supports. Catalysis Science and Technology, 2011, 1, 689.	4.1	33
136	Characterization of bimetallic FeRh/Sio2 catalysts by temperature programmed reduction, oxidation and Mössbauer spectroscopy. Applied Catalysis, 1984, 10, 155-162.	0.8	32
137	Câ~'N Coupling in Reactions between Atomic Nitrogen and Ethylene on Rh(111). Journal of Physical Chemistry B, 1997, 101, 7901-7907.	2.6	32
138	Reactions between NO and CO on rhodium (111): an elementary step approach. Surface Science, 1999, 433-435, 69-73.	1.9	32
139	Synthesis and Reactivity of Dimethyl Gold Complexes Supported on MgO:  Characterization by Infrared and X-ray Absorption Spectroscopies. Langmuir, 2005, 21, 3675-3683.	3.5	32
140	Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by Pd cocatalyst on TiO2. Applied Catalysis B: Environmental, 2021, 291, 120118.	20.2	32
141	Surface reactions of nitrogen oxide on rhodium (100), adsorption, dissociation and desorption. Surface Science, 1998, 402-404, 110-114.	1.9	31
142	Optimized CO ₂ Capture of the Zeolitic Imidazolate Framework ZIF-8 Modified by Solvent-Assisted Ligand Exchange. ACS Omega, 2021, 6, 21850-21860.	3.5	31
143	Surface potential around potassium promoter atoms on Rh(111) measured with photoemission of adsorbed Xe, Kr, and Ar. Physical Review B, 1994, 49, 14599-14609.	3.2	30
144	Quantifying lateral adsorbate interactions by kinetic Monte-Carlo simulations and density-functional theory: NO dissociation on Rh(100). Physical Chemistry Chemical Physics, 2004, 6, 1830.	2.8	30

#	Article	IF	CITATIONS
145	Introducing open films of nanosized cellulose—atomic force microscopy and quantification of morphology. Polymer, 2005, 46, 3307-3317.	3.8	30
146	Characterezation of FeRu/TiO2 and Fe/TiO2 catalysts after reduction and fischer-tropsch synthesis by MoËssbauer spectroscopy. Applied Catalysis, 1986, 27, 285-298.	0.8	29
147	Realistic surface science models of industrial catalysts. Applied Surface Science, 1999, 144-145, 366-374.	6.1	29
148	The CrOx/SiO2/Si(100) catalyst– a surface science approach to supported olefin polymerization catalysis. Macromolecular Symposia, 2001, 173, 37-52.	0.7	29
149	The effect of temperature on ethylene polymerization over flat Phillips model catalysts. Journal of Catalysis, 2006, 240, 39-46.	6.2	29
150	In situ Moessbauer spectroscopy of bimetallic iron-rhodium (FeRh)/silica catalysts at 295 K. The Journal of Physical Chemistry, 1983, 87, 1292-1294.	2.9	28
151	Evaluation of take-off-angle-dependent XPS for determining the thickness of passivation layers on aluminium and silicon. Surface and Interface Analysis, 1992, 19, 161-164.	1.8	28
152	Mechanism of the conversion of ethene to ethylidyne on rhodium(111): evidence for a vinylic intermediate. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3679.	1.7	28
153	The observation of nanometer-sized entities in sulphided Mo-based catalysts on various supports. Catalysis Letters, 2001, 74, 49-53.	2.6	28
154	Characterization and reactivity of vanadium oxide catalysts supported on niobia. Applied Catalysis A: General, 2003, 245, 303-316.	4.3	28
155	Decomposition of methanol on Au(310). Physical Chemistry Chemical Physics, 2005, 7, 1824.	2.8	28
156	Preparation of ZrO2 on flat, conducting SiO2/Si(100) model supports by wet chemical techniques; X-ray photoelectron spectroscopy and Auger depth profiling. Catalysis Letters, 1991, 10, 201-209.	2.6	27
157	In situ Mössbauer spectroscopy in catalysis. Topics in Catalysis, 1999, 8, 133-140.	2.8	27
158	Reactivity of Cr Species Grafted on SiO ₂ /Si(100) Surface:  A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime. Journal of Physical Chemistry C, 2007, 111, 16437-16444.	3.1	27
159	A density functional theory study of HCN hydrogenation to methylamine on Ni(111). Journal of Catalysis, 2007, 245, 436-445.	6.2	27
160	Adsorption and Decomposition of Ethene and Propene on Co(0001): The Surface Chemistry of Fischer–Tropsch Chain Growth Intermediates. Journal of Physical Chemistry C, 2016, 120, 29210-29224.	3.1	27
161	Consequences of Electron-Density Manipulations on the X-ray Photoelectron Spectroscopic Properties of Ferrocenyl-l²-diketonato Complexes of Manganese(III). Structure of [Mn(FcCOCHCOCH ₃) ₃]. Inorganic Chemistry, 2016, 55, 1992-2000.	4.0	27
162	Surface studies of partially fluorinated polymethacrylates: a combined XPS and LEIS analysis. Progress in Organic Coatings, 2002, 45, 273-279.	3.9	26

#	Article	IF	CITATIONS
163	A density functional theory study of HCN hydrogenation to methylamine on Co(111). Journal of Catalysis, 2007, 248, 38-45.	6.2	26
164	Surface science models of industrial catalysts. Surface Science, 2009, 603, 1756-1762.	1.9	26
165	Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study. ACS Catalysis, 2018, 8, 7326-7333.	11.2	26
166	Paired Electrochemical N–N Coupling Employing a Surface-Hydroxylated Ni ₃ Fe-MOF-OH Bifunctional Electrocatalyst with Enhanced Adsorption of Nitroarenes and Anilines. ACS Catalysis, 2021, 11, 13510-13518.	11.2	26
167	Mössbauer Spectroscopy of Iron and Iron Alloy Fischer-Tropsch Catalysts. , 1986, , 609-634.		25
168	Entropyâ€driven surface segregation of Pt in PtRh alloys. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 558-561.	2.1	25
169	The compensation effect in thermal desorption of adsorbate systems with lateral interactions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 757-761.	2.1	25
170	Cyanide intermediates in catalytic reduction of NO by C2H4 on rhodium (111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1642-1646.	2.1	25
171	Preparation of highly active NiW hydrotreating model catalysts with 1,2-cyclohexanediamine-N,N,N′N′-tetraacetic acid (CyDTA) as a chelating agent. Chemical Communications, 2000, , 1103-1104.	4.1	25
172	Ammonia adsorption and decomposition on silica supported Rh nanoparticles observed by in situ attenuated total reflection infrared spectroscopy. Applied Surface Science, 2006, 253, 572-580.	6.1	25
173	Introducing a Flat Model of the Silica-Supported Bis(imino)pyridyl Iron(II) Polyolefin Catalyst. Macromolecular Rapid Communications, 2006, 27, 279-283.	3.9	25
174	Properties of Manganese(III) Ferrocenyl-β-Diketonato Complexes Revealed by Charge Transfer and Multiplet Splitting in the Mn 2p and Fe 2p X-Ray Photoelectron Envelopes. Molecules, 2016, 21, 1427.	3.8	25
175	Preferential oxidation of CO in H2 on Cu and Cu/CeOx catalysts studied by in situ UV–Vis and mass spectrometry and DFT. Journal of Catalysis, 2018, 357, 176-187.	6.2	25
176	Sintering of cobalt during FTS: Insights from industrial and model systems. Catalysis Today, 2020, 342, 59-70.	4.4	25
177	Influence of particle motion on the Mössbauer effect in microcrystals α-FeOOH and α-Fe2O3. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 100, 445-447.	2.1	24
178	Oxidation state of platinum in oxidative-addition reactions and .eta.1-iodine products from dihalogen reactions with organoplatinum(II) complexes, as inferred from monochromatic x-ray photoelectron spectroscopy. Inorganic Chemistry, 1992, 31, 2655-2658.	4.0	24
179	Investigation of Planar Ziegler-Natta Model Catalysts Using Attenuated Total Reflection Infrared Spectroscopy. Catalysis Letters, 2009, 130, 278-285.	2.6	24
180	Interaction of hydrogen with flat (0001) and corrugated (11–20) and (10–12) cobalt surfaces: Insights from experiment and theory. Catalysis Today, 2020, 342, 124-130.	4.4	24

#	Article	IF	CITATIONS
181	Thermal stability of atomic Ag/Au and Au/Ag interfaces on a Ru(001) substrate. Surface Science, 1989, 213, 612-629.	1.9	23
182	Validation of the Flat Model Catalyst Approach to Olefin Polymerization Catalysis:Â From Catalyst Heterogenization to Polymer Morphology. Macromolecules, 2003, 36, 1440-1445.	4.8	23
183	Ethylene Decomposition on Rh(100): Theory and Experimentâ€. Journal of Physical Chemistry B, 2004, 108, 14541-14548.	2.6	23
184	The influence of carbon on the adsorption of CO on a Rh(100) single crystal. Physical Chemistry Chemical Physics, 2006, 8, 624-632.	2.8	23
185	Explicit Roles of Au and TiO ₂ in a Bifunctional Au/TiO ₂ Catalyst for the Waterâ€Gas Shift Reaction: A DFT Study. ChemCatChem, 2013, 5, 2479-2488.	3.7	23
186	Surface chemistry of catalyst preparation studied by using flat alumina model supports. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2737-2741.	2.1	22
187	Kinetics and Mechanism of NH3Formation by the Hydrogenation of Atomic Nitrogen on Rh(111). Journal of Physical Chemistry B, 1997, 101, 998-1005.	2.6	22
188	Calcium induced oxidation of PPV studied with X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Chemical Physics, 2002, 278, 159-167.	1.9	22
189	First-Principles Elucidation of the Surface Chemistry of the C2Hx (x = 0–6) Adsorbate Series on Fe(100). Molecules, 2013, 18, 3806-3824.	3.8	22
190	Analysis of the Magnetic Entropy in Oxygen Reduction Reactions Catalysed by Manganite Perovskites. ChemCatChem, 2017, 9, 3358-3363.	3.7	22
191	Microscopic pooperties of two-dimensional silver and gold metal- and alloy-films on Ru(001). Surface Science, 1987, 189-190, 114-119.	1.9	21
192	Surface reactions of nitrogen oxide and ethylene on rhodium (111). Catalysis Letters, 1996, 41, 125-131.	2.6	21
193	Formation of NH3 and N2 from atomic nitrogen and hydrogen on rhodium (111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1558-1562.	2.1	21
194	Structure and Reactivity of Bimetallic FeIr/SiO2 Catalysts after Reduction and during High-Pressure CO Hydrogenation. Journal of Catalysis, 1997, 170, 331-345.	6.2	21
195	Realistic Surface Science Models of Hydrodesulfurization Catalysts on Planar Thin-Film Supports: The Role of Chelating Agents in the Preparation of CoW/SiO ₂ catalysts. Topics in Catalysis, 2004, 29, 103-110.	2.8	21
196	A Flat Model Approach to Zieglerâ€Natta Catalysts for Propylene Polymerization and a Preparation Method of Wellâ€defined Crystallites of MgCl ₂ â€supported Catalysts. Macromolecular Symposia, 2007, 260, 140-146.	0.7	21
197	Chemistry of Ethylene Glycol on a Rh(100) Single rystal Surface. ChemSusChem, 2009, 2, 883-886.	6.8	21
198	Interactions between co-adsorbed CO and H on a Rh(100) single crystal surface. Physical Chemistry Chemical Physics, 2009, 11, 10009.	2.8	21

#	Article	IF	CITATIONS
199	Stabilization of iron by manganese promoters in uniform bimetallic FeMn Fischer–Tropsch model catalysts prepared from colloidal nanoparticles. Journal of Lithic Studies, 2015, 1, 101-109.	0.5	21
200	FeP Nanocatalyst with Preferential [010] Orientation Boosts the Hydrogen Evolution Reaction in Polymer-Electrolyte Membrane Electrolyzer. Energy & Fuels, 2020, 34, 6423-6429.	5.1	21
201	Characterization of graphite-supported platinum catalysts by electrochemical methods and XPS. Surface and Interface Analysis, 1992, 19, 537-542.	1.8	20
202	Pure component spectral analysis of surface adsorbed species measured under real conditions. BTEM-DRIFTS study of CO and NO reaction over a Pd/γ-Al2O3 catalyst. Physical Chemistry Chemical Physics, 2008, 10, 5510.	2.8	20
203	Au/TiO2 catalysts encapsulated in the mesopores of siliceous MCM-48 – Reproducible synthesis, structural characterization and activity for CO oxidation. Microporous and Mesoporous Materials, 2009, 118, 52-60.	4.4	20
204	Reduction of Cu-Promoted Fe Model Catalysts Studied by In Situ Indirect Nanoplasmonic Sensing and X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 4085-4094.	3.1	20
205	Preparation and surface characterization of silica-supported ZrO2 catalysts; comparison of layered model systems with powder catalysts. Surface and Interface Analysis, 1992, 18, 412-416.	1.8	19
206	Nascent morphology of polyethylene polymerized on flat model catalysts. Polymer International, 2004, 53, 824-827.	3.1	19
207	Activation pathways taking place at molecular copper precatalysts for the oxygen evolution reaction. Catalysis Today, 2017, 290, 33-38.	4.4	19
208	Two Gold Surfaces and a Cluster with Remarkable Reactivity for CO Oxidation, a Density Functional Theory Study. Topics in Catalysis, 2011, 54, 415-423.	2.8	18
209	Energetic Driving Force of H Spillover between Rhodium and Titania Surfaces: A DFT View. Journal of Physical Chemistry C, 2012, 116, 25362-25367.	3.1	18
210	Visualization of on-surface ethylene polymerization through ethylene insertion. Science, 2022, 375, 1188-1191.	12.6	18
211	Thickness determination of uniform overlayers on rough substrates: A comparison of calculations for Al2O3/Al to xâ€ray photoelectron spectroscopy and atomic force microscopy experiments on technical aluminum foils. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995–13–1290-1292	2.1	17
212	Assignment of the vibrational features in the Rh(111)–(2×2)-3CO adsorption structure using density functional theory calculations. Chemical Physics Letters, 2002, 354, 503-507.	2.6	17
213	Intrinsic Thiophene Hydrodesulfurization Kinetics of a Sulfided NiMo/SiO2Model Catalyst: Volcano-Type Behavior. Catalysis Letters, 2003, 90, 117-122.	2.6	17
214	Preparation and Characterization of Supported Bimetallic Pd ^{IV} –Co ^{III} Model Catalyst from Organometallic Single Source Precursor for Aerobic Oxidation of Alcohols. Langmuir, 2012, 28, 16477-16484.	3.5	17
215	Promoter segregation in Pt and Ru promoted cobalt model catalysts during oxidation–reduction treatments. Catalysis Today, 2013, 215, 2-7.	4.4	17
216	Understanding FTS selectivity: the crucial role of surface hydrogen. Faraday Discussions, 2017, 197, 101-116.	3.2	17

#	Article	IF	CITATIONS
217	Mechanism of twoâ€dimensional AgAu alloy formation on Ru(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 2849-2853.	2.1	16
218	Competitive CN and N2 formation on Rh(1 1 1): a case of entropic stabilization. Chemical Physics Letters, 2004, 385, 52-54.	2.6	16
219	In situ synthesis of ammonium salt of 12-molybdophosphoric acid on iron phosphate and the ammoxidation functionality of the catalyst in the transformation of 2-methylpyrazine to 2-cyanopyrazine. Applied Catalysis A: General, 2005, 296, 54-62.	4.3	16
220	Trimethylsilylcellulose/Polystyrene Blends as a Means To Construct Cellulose Domains on Cellulose. Macromolecules, 2005, 38, 10712-10720.	4.8	16
221	Density Functional Theory Study of CO Adsorption and Dissociation on Molybdenum(100). Journal of Physical Chemistry C, 2007, 111, 13473-13480.	3.1	16
222	Ab-initio calculations of the direct and hydrogen-assisted dissociation of CO on Fe(3 1 0). Chemical Physics Letters, 2012, 534, 54-57.	2.6	16
223	Orbital Physics of Perovskites for the Oxygen Evolution Reaction. Topics in Catalysis, 2018, 61, 267-275.	2.8	16
224	CO as a Promoting Spectator Species of C _{<i>x</i>} H _{<i>y</i>} Conversions Relevant for Fischer–Tropsch Chain Growth on Cobalt: Evidence from Temperature-Programmed Reaction and Reflection Absorption Infrared Spectroscopy. ACS Catalysis, 2018, 8, 10826-10835.	11.2	16
225	Promotion Mechanisms of Au Supported on TiO ₂ in Thermal- and Photocatalytic Glycerol Conversion. Journal of Physical Chemistry C, 2019, 123, 19734-19741.	3.1	16
226	Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for Catalytic Water Oxidation. European Journal of Inorganic Chemistry, 2020, 2020, 801-812.	2.0	16
227	Flat and Stretched Delafossite α-AgGaO ₂ : Manipulating Redox Chemistry under Visible Light. ACS Catalysis, 2021, 11, 15083-15088.	11.2	16
228	In situ Mössbauer spectroscopy of carbon-supported iron catalysts at cryogenic temperatures and in external magnetic fields. Catalysis Letters, 1992, 13, 195-202.	2.6	15
229	Long and short range effect of alkali promoters on metal surfaces: K on Rh(111). Catalysis Letters, 1993, 19, 263-272.	2.6	15
230	Role of surface diffusion in the ordering of adsorbed molecules: dynamic Monte Carlo simulations of NO on Rh(111). Chemical Physics Letters, 1999, 302, 98-102.	2.6	15
231	The Influence of Promoters and Poisons on Carbon Monoxide Adsorption on Rh(100): A DFT Study. ChemPhysChem, 2005, 6, 1293-1298.	2.1	15
232	Visualization of local ethylene polymerization activity on a flat CrO x /SiO2/Si(100) model catalyst. Topics in Catalysis, 2007, 46, 239-245.	2.8	15
233	How Surface Reactivity Depends on the Configuration of Coadsorbed Reactants: CO Oxidation on Rh(100). Journal of Physical Chemistry C, 2010, 114, 17127-17135.	3.1	15
234	A Direct Relation between Adsorbate Interactions, Configurations, and Reactivity: CO Oxidation on Rh(111). Journal of Physical Chemistry C, 2010, 114, 21672-21680.	3.1	15

#	Article	IF	CITATIONS
235	Photocatalytic C C bond cleavage in ethylene glycol on TiO2: A molecular level picture and the effect of metal nanoparticles. Journal of Catalysis, 2017, 354, 37-45.	6.2	15
236	Boosting Photocatalytic Hydrogen Production by Modulating Recombination Modes and Proton Adsorption Energy. Journal of Physical Chemistry Letters, 2019, 10, 5381-5386.	4.6	15
237	Working surface science model of CoMoS hydrodesulfurization catalysts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1592-1596.	2.1	14
238	Testing the Pairwise Additive Potential Approximation Using DFT: Coadsorption of CO and N on Rh(100). ChemPhysChem, 2005, 6, 473-480.	2.1	14
239	Pulsed activation in heterogeneous catalysis. Applied Thermal Engineering, 2013, 57, 180-187.	6.0	14
240	Monolayer Iron Carbide Films on Au(111) as a Fischer–Tropsch Model Catalyst. ACS Catalysis, 2014, 4, 3255-3260.	11.2	14
241	Ammonia Adsorption and Decomposition on Co(0001) in Relation to Fischer–Tropsch Synthesis. Journal of Physical Chemistry C, 2016, 120, 3834-3845.	3.1	14
242	Detangling Catalyst Modification Reactions from the Oxygen Evolution Reaction by Online Mass Spectrometry. ACS Catalysis, 2016, 6, 7872-7875.	11.2	14
243	Early stages of catalyst aging in the iridium mediated water oxidation reaction. Physical Chemistry Chemical Physics, 2016, 18, 10931-10940.	2.8	14
244	Metal cocatalyst mediated photocatalytic dehydrogenative-condensation and direct condensation cross-coupling of aniline and alcohol. Applied Catalysis B: Environmental, 2022, 309, 121264.	20.2	14
245	Characterization of supported bimetallic FeIr/SiO2 catalysts by mössbauer spectroscopy, temperature-programmed reduction and X-ray photoelectron spectroscopy. Surface and Interface Analysis, 1986, 9, 221-225.	1.8	13
246	Coke formation on platinum metals studied by Auger electron spectroscopy and secondary ion mass spectrometry. Fuel, 1986, 65, 1396-1399.	6.4	13
247	Ferric iron in reduced SiO2-supported FeRu and FePt catalysts: Evidence from M�ssbauer spectroscopy and electron spin resonance. Journal of Catalysis, 1987, 108, 259-262.	6.2	13
248	Vibrational Stark tuning rates from periodic DFT calculations: CO/Pt(111). Electrochimica Acta, 2008, 53, 2897-2906.	5.2	13
249	The Beneficial Effect of Hydrogen on CO Oxidation over Au Catalysts. A Computational Study. Molecules, 2011, 16, 9582-9599.	3.8	13
250	The role of carboxylic acid in cobalt Fischer-Tropsch synthesis catalyst deactivation. Catalysis Today, 2016, 275, 127-134.	4.4	13
251	Applications of secondary ion mass spectrometry in catalysis and surface chemistry. Catalysis, 0, , 1-50.	1.0	13
252	Mössbauer spectroscopy of supported bimetallic catalysts: 1â^¶5 FeM/SiO2 (M=Ru, Rh, Pd, Ir, Pt). Hyperfine Interactions, 1986, 28, 867-870.	0.5	12

#	Article	IF	CITATIONS
253	Surface characterization by means of photoemission of adsorbed xenon (PAX). Surface and Interface Analysis, 1988, 12, 15-20.	1.8	12
254	Aspects of dissociative chemisorption and promotion in catalysis. Applied Physics A: Materials Science and Processing, 1995, 61, 503-509.	2.3	12
255	Kinetics of elementary surface reactions studied by static secondary ion mass spectrometry and temperature programmed reaction spectroscopy1In memory of Brian Bent whose publications and presentations have inspired us greatly.1. Journal of Molecular Catalysis A, 1998, 131, 199-208.	4.8	12
256	Adsorption/desorption studies of CO on a rhodium(100) surface under UHV conditions: A comparative study using XPS, RAIRS, and SSIMS. Catalysis Today, 2010, 154, 53-60.	4.4	12
257	The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016, 18, 30117-30127.	2.8	12
258	In-situ probing photocatalytic C C bond cleavage in ethylene glycol under ambient conditions and the effect of metal cocatalyst. Journal of Catalysis, 2018, 365, 313-319.	6.2	12
259	How important is Mössbauer spectroscopy in catalysis?. Hyperfine Interactions, 1989, 47-48, 219-235.	0.5	11
260	Attenuated total reflection infrared spectroscopy for studying adsorbates on planar model catalysts: CO adsorption on silica supported Rh nanoparticles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 296-304.	2.1	11
261	Pt nanoparticles inside the mesopores of TiO2–MCM-48: synthesis, characterization and catalytic activity for CO oxidation. Journal of Materials Science, 2009, 44, 6701-6709.	3.7	11
262	A new approach to silver-catalysed aerobic oxidation of octadecanol: Probing catalysts utilising a flat, two-dimensional silicon-based model support system. Catalysis Communications, 2012, 27, 193-199.	3.3	11
263	Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100). Physical Chemistry Chemical Physics, 2016, 18, 23888-23903.	2.8	11
264	Structure-dependent adsorption and desorption of hydrogen on FCC and HCP cobalt surfaces. Journal of Catalysis, 2022, 405, 303-312.	6.2	11
265	AES and SIMS of carbonaceous adsorbate layers on Pt, Rh, and PtRh. Surface and Interface Analysis, 1986, 9, 215-219.	1.8	10
266	Comparative test of procedures for thermal desorption analysis. Vacuum, 1990, 41, 232-233.	3.5	10
267	Surface magnetism in ultrafine α-Fe particles. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 1695-1696.	2.3	10
268	Realistic Surface Science Models of Supported Catalysts: The Chromium Oxide Ethylene Polymerization Catalyst. Israel Journal of Chemistry, 1998, 38, 385-391.	2.3	10
269	A density functional study of the adsorption of CO on Rh(111). Physical Chemistry Chemical Physics, 2002, 4, 5372-5376.	2.8	10
270	Advantages of FCCA and Bi promotion in Bi–Pd/FCCA catalysts for the hydrodechlorination of CCl2F2. Applied Catalysis A: General, 2004, 259, 169-178.	4.3	10

#	Article	IF	CITATIONS
271	Migration of Carbon into Subsurface Layers of Rh(100): A DFT Study. ChemPhysChem, 2006, 7, 1022-1025.	2.1	10
272	Adsorption, Desorption, and Dissociation of CO on Tungsten(100), a DFT Study. Journal of Physical Chemistry C, 2008, 112, 7436-7444.	3.1	10
273	Methanol from synthesis gas over bimetallic FePd catalysts. Hyperfine Interactions, 1988, 41, 677-680.	0.5	9
274	Surface science models for CoMo hydrodesulfurization catalysts: Influence of the support on hydrodesulfurization activity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1510-1515.	2.1	9
275	Simulating temperature programmed desorption directly from density functional calculations: How adsorbate configurations relate to desorption features. Chemical Physics Letters, 2005, 407, 227-231.	2.6	9
276	Tricarbonyls of Low-Coordinated Au(0) Atoms in Zeolite-Supported Gold Nanoparticles:Â Evidence from Infrared and X-ray Absorption Spectroscopies. Langmuir, 2006, 22, 4310-4314.	3.5	9
277	Spectral reconstruction of surface adsorbed species using band-target entropy minimization. Application to CO and NO reaction over a Pt/l³-Al2O3 catalyst using in situ DRIFT spectroscopy. Physical Chemistry Chemical Physics, 2008, 10, 3535.	2.8	9
278	Influence of Nitrogen Atoms on the Adsorption of CO on a Rh(100) Single Crystal Surface. Journal of Physical Chemistry C, 2009, 113, 12277-12285.	3.1	9
279	Interaction and Reaction of Coadsorbed NO and CO on a Rh(100) Single Crystal Surface. Langmuir, 2010, 26, 16239-16245.	3.5	9
280	SiO 2 -supported Fe & FeMn colloids—Fischer-Tropsch synthesis on 3D model catalysts. Applied Catalysis A: General, 2017, 537, 83-92.	4.3	9
281	Genesis of an Fe5C2@Fe3O4 core/shell structure during CO carburization of metallic iron nanoparticles. Journal of Catalysis, 2022, 407, 97-103.	6.2	9
282	FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Mössbauer spectroscopy. Hyperfine Interactions, 1986, 28, 899-902.	0.5	8
283	Potential of UV–Raman Spectroscopy for Characterization of Sub-monolayer MoOxModel Catalysts at Ambient Pressure. Catalysis Letters, 2004, 96, 1-4.	2.6	8
284	Quantification of Liquid Crystal Concentrations in Periodically Stratified Polymer-Dispersed Liquid Crystal Films by Dynamic Secondary Ion Mass Spectrometry and Multivariate Statistical Analysis. Journal of Physical Chemistry C, 2007, 111, 10965-10971.	3.1	8
285	X-ray photoelectron spectroscopy study on the chemistry involved in tin oxide film growth during chemical vapor deposition processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 01A105.	2.1	8
286	Catalysis for Fuels: general discussion. Faraday Discussions, 2017, 197, 165-205.	3.2	8
287	Effect of Aldehyde and Carboxyl Functionalities on the Surface Chemistry of Biomass-Derived Molecules. Langmuir, 2017, 33, 11919-11929.	3.5	8
288	Can Electrochemical Measurements Be Used To Predict X-ray Photoelectron Spectroscopic Data? The Case of Ferrocenyl-Î2-Diketonato Complexes of Manganese(III). Inorganic Chemistry, 2018, 57, 6606-6616.	4.0	8

#	Article	IF	CITATIONS
289	Hydrogen Content and Graphitization of Carbonaceous Deposits on Noble Metals and Alloys Studied With Secondary Ion Mass Spectrometry. Studies in Surface Science and Catalysis, 1988, , 769-781.	1.5	7
290	Curve fitting of photoemission spectra with physically realistic subspectra. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1742-1744.	2.1	7
291	Improved activity of a silica supported ruthenium catalyst by carbon monoxide pretreatment. Applied Catalysis A: General, 1994, 115, 315-326.	4.3	7
292	Title is missing!. Catalysis Letters, 1997, 43, 45-49.	2.6	7
293	Atom–Molecule Interactions on Transition Metal Surfaces: A DFT Study of CO and Several Atoms on Rh(100), Pd(100) and Ir(100). ChemPhysChem, 2006, 7, 1075-1080.	2.1	7
294	Designing new catalysts for synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 353-388.	3.2	7
295	Intercalation Mechanisms of Fe Atoms underneath A Graphene Monolayer on Ru(0001). Journal of Physical Chemistry C, 2018, 122, 22903-22910.	3.1	7
	Synthesis. Spectroscopy and Electrochemistry in Relation to DFT Computed Energies of Ferrocene- and		

296 Ruthenocene-Containing -Diketonato Iridium(III) Heteroleptic Complexes. Structure of

#	Article	IF	CITATIONS
307	Miscibility between monolayer gold and silver layers. Vacuum, 1988, 38, 321-323.	3.5	5
308	Site-exchange processes across an atomic Ag/Au interface. Surface Science, 1989, 211-212, 414-421.	1.9	5
309	Applications of cyclotron based ion scattering. Nuclear Instruments & Methods in Physics Research B, 1994, 89, 114-121.	1.4	5
310	Surface science models of CoMoS hydrodesulfurisation catalysts. Studies in Surface Science and Catalysis, 1997, 106, 273-280.	1.5	5
311	On the H-exchange of ammonia and silica hydroxyls in the presence of Rh nanoparticles. Applied Surface Science, 2007, 253, 3600-3607.	6.1	5
312	Modeling the Surface Chemistry of Sugars: Glycolaldehyde on Rhodium (100). Journal of Physical Chemistry C, 2015, 119, 22915-22923.	3.1	5
313	Effect of ammonia on cobalt Fischer–Tropsch synthesis catalysts: a surface science approach. Catalysis Science and Technology, 2019, 9, 702-710.	4.1	5
314	Overpotential analysis of alkaline and acidic alcohol electrolysers and optimized membrane-electrode assemblies. International Journal of Hydrogen Energy, 2019, 44, 10163-10173.	7.1	5
315	Characterization of carbonaceous overlayers on platinum by catalytic oxidation. Vacuum, 1988, 38, 393-395.	3.5	4
316	Materials analysis with Rutherford Backscattering Spectrometry; Application to catalysts. Reaction Kinetics and Catalysis Letters, 1993, 50, 131-137.	0.6	4
317	A Flat Model Approach to Tethered Bis(imino)pyridyl Iron Ethylene Polymerization Catalysts. Macromolecular Symposia, 2007, 260, 147-153.	0.7	4
318	Superhydrophobic Polyethylene Films by Catalytic Ethylene Polymerization. Journal of Adhesion Science and Technology, 2008, 22, 353-363.	2.6	4
319	Carbon monoxide adsorption on cobalt overlayers on a Si(1 1 1) surface studied by STM and XPS. Applied Surface Science, 2021, 569, 151045.	6.1	4
320	Site exchange of atoms across atomically sharp Ag–Au interfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2080-2082.	2.1	3
321	Takeâ€off angle dependent xâ€ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning electron microscopy for determining the thickness and composition of passivation layers on technical aluminum foils. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 1992. 10. 2846-2851.	2.1	3
322	Surface reactions of ethylene with deuterium, oxygen and nitrogen oxide on rhodium: Kinetics and mechanism. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 486-491.	0.0	3
323	Adsorption of H ₂ 0, H ₂ S, and N ₂ on MnZn ferrite. Journal of Materials Research, 2000, 15, 2730-2736.	2.6	3
324	Secondary ion mass spectrometry for the identification of polymers with noncharacteristic secondary ions using multivariate statistical analysis. Applied Physics Letters, 2004, 84, 1789-1791.	3.3	3

#	Article	IF	CITATIONS
325	Role of Interfaces in the Thermal Reduction Process of the FeO/Cu2O/Cu(100) Surface. Journal of Physical Chemistry C, 2021, 125, 20863-20869.	3.1	3
326	CO adsorption on Co(0001) revisited: High-coverage CO superstructures on the close-packed surface of cobalt. Journal of Catalysis, 2022, 408, 142-154.	6.2	3
327	Summary Abstract: Catalytic carbon deposition on Pt, Ir, and PtIr. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 1134-1135.	2.1	2
328	Surface Model for Gas-Phase Polymerizations of Ethylene and Propylene Using Supported Metallocene/Methylalumoxane Catalysts. Israel Journal of Chemistry, 2002, 42, 367-372.	2.3	2
329	The Structure of Amorphous MoS ₃ . Bulletin Des Sociétés Chimiques Belges, 1995, 104, 299-299.	0.0	2
330	Transmission electron microscopy on early-stage tin oxide film morphology grown by atmospheric pressure chemical vapor deposition. Applied Surface Science, 2014, 309, 263-270.	6.1	2
331	Reactivity of C3Hx Adsorbates in Presence of Co-adsorbed CO and Hydrogen: Testing Fischer–Tropsch Chain Growth Mechanisms. Topics in Catalysis, 2020, 63, 1412-1423.	2.8	2
332	Novel microreactor and generic model catalyst platform for the study of fast temperature pulsed operation – CO oxidation rate enhancement on Pt. Chemical Engineering Journal, 2021, 425, 131559.	12.7	2
333	The Rate Equation. Fundamental and Applied Catalysis, 1995, , 21-72.	0.9	2
334	Collision and Reaction-Rate Theory. Fundamental and Applied Catalysis, 1995, , 105-167.	0.9	2
335	Small particles in catalysts, catalysis and surface chemistry. , 1992, , 351-360.		2
336	Copper dendrite stabilized NiFe(OH) _{<i>x</i>} electrocatalyst for durable alkaline hydrogen evolution over 1000 h. Chemical Communications, 2022, 58, 6024-6027.	4.1	2
337	Synthesis of Well-defined Iron Nanoparticles on a Spherical Model Support. , 2009, , .		1
338	The Science of Catalysis. Fundamental and Applied Catalysis, 1995, , 1-19.	0.9	1
339	Preparation, Structure and Surface Chemical Properties of Hydrotreating Model Catalysts: A Surface Science Approach. , 1998, , 207-234.		1
340	Surface composition of Pt-Rh alloys; The role of lattice vibrational entropy. Surface Science Letters, 1986, 178, A678.	0.1	0
341	Thin metal films and gas chemisorption, studies in surface science and catalysis, vol. 32. Applied Catalysis, 1987, 35, 188-189.	0.8	0
342	Poster contributions. Hyperfine Interactions, 1989, 47-48, 433-589.	0.5	0

#	Article	IF	CITATIONS
343	Reactivity of carbon deposits on noble metal catalysts. Ultramicroscopy, 1989, 27, 198-199.	1.9	Ο
344	Surface characterization in catalysis: An area of conflicting requirements. Ultramicroscopy, 1989, 27, 212.	1.9	0
345	Exchange of atoms across atomically sharp interfaces. Ultramicroscopy, 1989, 27, 212.	1.9	0
346	Site-exchange processes across an atomic Ag/Au interface. Surface Science Letters, 1989, 211-212, A125.	0.1	0
347	Thermal stability of atomic Ag/Au and Au/Ag interfaces on A Ru(001) substrate. Surface Science Letters, 1989, 213, A231-A232.	0.1	0
348	Catalyst characterization: Mössbauer spectroscopy in relation to other techniques. Hyperfine Interactions, 1990, 53, 93-96.	0.5	0
349	George C.A. Schuit 1910–2001. Advances in Catalysis, 2002, 47, xix-xxi.	0.2	0
350	Applications in Catalysis of ToF-SIMS Surface Analysis by Mass Spectrometry. ChemInform, 2003, 34, no.	0.0	0
351	Modelling the Sulfidation of Molybdenum Oxides: A Mechanistic Study. Bulletin Des Sociétés Chimiques Belges, 1995, 104, 301-301.	0.0	0
352	Heterogeneous Catalysis: Introduction. , 2013, , 1-6.		0
353	Heterogeneous Catalysis. , 2017, , 15-71.		0
354	Volume Editors' Introduction. , 2013, , xxxvii-xxxviii.		0
355	Atomic Force Microscopy as a Tool to Study Surface Roughness Effects in X-Ray Photoelectron Spectroscopy. , 1995, , 495-499.		0
356	Microscopic Theory of Heterogeneous Catalysis. Fundamental and Applied Catalysis, 1995, , 211-268.	0.9	0
357	Surface chemical characterization. , 0, , .		0
358	Aspects of dissociative chemisorption and promotion in catalysis. Applied Physics A: Materials Science and Processing, 1995, 61, 503-509.	2.3	0