
Daniel Bopp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperatureâ€dependent effects of house fly proto‥ chromosomes on gene expression could be responsible for fitness differences that maintain polygenic sex determination. Molecular Ecology, 2021, 30, 5704-5720.	3.9	6
2	Minimal Effects of Proto- <i>Y</i> Chromosomes on House Fly Gene Expression in Spite of Evidence that Selection Maintains Stable Polygenic Sex Determination. Genetics, 2019, 213, 313-327.	2.9	11
3	Male sex in houseflies is determined by <i>Mdmd</i> , a paralog of the generic splice factor gene <i>CWC22</i> . Science, 2017, 356, 642-645.	12.6	119
4	Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Scientific Reports, 2017, 7, 10061.	3.3	59
5	CRISPR-Cas9 targeted disruption of the yellow ortholog in the housefly identifies the brown body locus. Scientific Reports, 2017, 7, 4582.	3.3	29
6	Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biology, 2014, 15, 466.	8.8	252
7	Sex Determination in Insects: Variations on a Common Theme. Sexual Development, 2014, 8, 20-28.	2.0	125
8	Genetic Control of Courtship Behavior in the Housefly: Evidence for a Conserved Bifurcation of the Sex-Determining Pathway. PLoS ONE, 2013, 8, e62476.	2.5	32
9	A New Component of the Nasonia Sex Determining Cascade Is Maternally Silenced and Regulates Transformer Expression. PLoS ONE, 2013, 8, e63618.	2.5	45
10	Sexual Behavior: How Sex Peptide Flips the Postmating Switch ofÂFemale Flies. Current Biology, 2012, 22, R520-R522.	3.9	59
11	About females and males: continuity and discontinuity in flies. Journal of Genetics, 2010, 89, 315-323.	0.7	23
12	Molecular Characterization of the Key Switch <i>F</i> Provides a Basis for Understanding the Rapid Divergence of the Sex-Determining Pathway in the Housefly. Genetics, 2010, 184, 155-170.	2.9	155
13	Hormones and Sex-Specific Transcription Factors Jointly Control Yolk Protein Synthesis in <i>Musca domestica</i> . International Journal of Evolutionary Biology, 2009, 2009, 1-9.	1.0	4
14	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	27.8	1,255
15	The transformer2 gene in Musca domestica is required for selecting and maintaining the female pathway of development. Development Genes and Evolution, 2005, 215, 165-176.	0.9	70
16	Sex determination in Drosophila melanogaster and Musca domestica converges at the level of the terminal regulator doublesex. Development Genes and Evolution, 2004, 214, 29-42.	0.9	116
17	Musca domestica, a window on the evolution of sex-determining mechanisms in insects. International Journal of Developmental Biology, 2002, 46, 75-9.	0.6	87
18	Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evolution & Development, 2001, 3, 397-407.	2.0	87

DANIEL BOPP

#	Article	IF	CITATIONS
19	Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Molecular Biology, 2001, 10, 113-119.	2.0	82
20	Merging sex and position. BioEssays, 2001, 23, 304-306.	2.5	3
21	The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity Genes and Development, 1994, 8, 598-613.	5.9	309
22	The paired box gene pox neuro: A determiant of poly-innervated sense organs in Drosophila. Cell, 1992, 69, 159-172.	28.9	136
23	Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster Genes and Development, 1991, 5, 403-415.	5.9	210
24	X:A ratio, the primary sex-determining signal in Drosophila, is transduced by helix-loop-helix proteins. Cell, 1990, 63, 1179-1191.	28.9	167
25	Structure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis Genes and Development, 1987, 1, 1247-1267.	5.9	227
26	Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell, 1986, 47, 1033-1040.	28.9	496
27	Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell, 1986, 47, 735-746.	28.9	509
28	Isolation of the paired gene of Drosophila and its spatial expression during early embryogenesis. Nature, 1986, 321, 493-499.	27.8	178
29	Isolation and Structural Analysis of the extra sex combs Gene of Drosophila. Cold Spring Harbor Symposia on Quantitative Biology, 1985, 50, 127-134.	1.1	19