PatrÃ-cia Valentão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749370/publications.pdf

Version: 2024-02-01

330 papers 16,309 citations

68 h-index 30087 103 g-index

339 all docs 339 docs citations

times ranked

339

18854 citing authors

#	Article	IF	CITATIONS
1	Phenolics: From Chemistry to Biology. Molecules, 2009, 14, 2202-2211.	3.8	477
2	Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 2007, 12, 1153-1162.	3.8	385
3	Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 2007, 45, 2287-2295.	3.6	356
4	Quince (Cydonia oblongaMiller) Fruit (Pulp, Peel, and Seed) and Jam:Â Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2004, 52, 4705-4712.	5.2	282
5	Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chemistry, 2005, 89, 561-568.	8.2	281
6	Antioxidative Properties of Cardoon (Cynara cardunculusL.) Infusion Against Superoxide Radical, Hydroxyl Radical, and Hypochlorous Acid. Journal of Agricultural and Food Chemistry, 2002, 50, 4989-4993.	5.2	244
7	Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, 2013, 42, 126-132.	5.2	237
8	Ficus carica L.: Metabolic and biological screening. Food and Chemical Toxicology, 2009, 47, 2841-2846.	3.6	204
9	Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007, 1161, 214-223.	3.7	189
10	Table Olives from Portugal:  Phenolic Compounds, Antioxidant Potential, and Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 8425-8431.	5.2	187
11	Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Marine Drugs, 2012, 10, 2766-2781.	4.6	180
12	Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. International Journal of Molecular Sciences, 2018, 19, 1668.	4.1	176
13	Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions?. PLoS ONE, 2012, 7, e31145.	2.5	173
14	Antioxidant Activity of Centaurium erythraealnfusion Evidenced by Its Superoxide Radical Scavenging and Xanthine Oxidase Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2001, 49, 3476-3479.	5.2	164
15	Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchemical Journal, 2009, 93, 73-77.	4.5	164
16	Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair?. Journal of Experimental Botany, 2011, 62, 2841-2854.	4.8	157
17	Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Marine Drugs, 2015, 13, 3182-3230.	4.6	155
18	Valuable compounds in macroalgae extracts. Food Chemistry, 2013, 138, 1819-1828.	8.2	148

#	Article	IF	CITATIONS
19	Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food and Chemical Toxicology, 2009, 47, 860-865.	3.6	137
20	Phenolic fingerprint of peppermint leaves. Food Chemistry, 2001, 73, 307-311.	8.2	135
21	Antioxidant Activity of Hypericum androsaemum Infusion: Scavenging Activity against Superoxide Radical, Hydroxyl Radical and Hypochlorous Acid Biological and Pharmaceutical Bulletin, 2002, 25, 1320-1323.	1.4	131
22	Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chemistry, 2004, 88, 373-379.	8.2	130
23	Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chemistry, 2009, 114, 1019-1027.	8.2	123
24	Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases. Marine Drugs, 2014, 12, 4934-4972.	4.6	123
25	Correlation between the Pattern Volatiles and the Overall Aroma of Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2008, 56, 1704-1712.	5 . 2	118
26	Phenolics and antimicrobial activity of traditional stoned table olives †alcaparra'. Bioorganic and Medicinal Chemistry, 2006, 14, 8533-8538.	3.0	113
27	Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal, 2009, 93, 29-35.	4.5	113
28	Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food and Chemical Toxicology, 2009, 47, 1372-1377.	3.6	113
29	Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea Europaea L.) leaf cultivars. Natural Product Research, 2005, 19, 189-195.	1.8	111
30	Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida albicans Virulence Factor. PLoS ONE, 2013, 8, e72203.	2.5	107
31	Studies on the Antioxidant Activity of <i>Lippia citriodora</i> Infusion: Scavenging Effect on Superoxide Radical, Hydroxyl Radical and Hypochlorous Acid. Biological and Pharmaceutical Bulletin, 2002, 25, 1324-1327.	1.4	102
32	Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. Journal of Chromatography A, 2008, 1182, 56-64.	3.7	102
33	Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchemical Journal, 2009, 92, 129-134.	4.5	102
34	Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology, 2007, 45, 1805-1813.	3.6	101
35	Chemical and antioxidative assessment of dietary turnip (Brassica rapa var. rapa L.). Food Chemistry, 2007, 105, 1003-1010.	8.2	99
36	Water and methanolic extracts of Salvia officinalis protect HepG2 cells from t-BHP induced oxidative damage. Chemico-Biological Interactions, 2007, 167, 107-115.	4.0	99

#	Article	IF	CITATIONS
37	In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chemistry, 2011, 129, 454-462.	8.2	98
38	Bauhinia forficata Link authenticity using flavonoids profile: Relation with their biological properties. Food Chemistry, 2012, 134, 894-904.	8.2	97
39	European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chemistry, 2017, 215, 177-184.	8.2	95
40	New Phenolic Compounds and Antioxidant Potential of <i>Catharanthus roseus</i> Agricultural and Food Chemistry, 2008, 56, 9967-9974.	5.2	93
41	Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles. International Journal of Molecular Sciences, 2015, 16, 17696-17718.	4.1	92
42	Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. Journal of Food Science and Technology, 2017, 54, 219-227.	2.8	90
43	Phenolic Profile of <i>Cydonia oblonga</i> Miller Leaves. Journal of Agricultural and Food Chemistry, 2007, 55, 7926-7930.	5.2	89
44	First Report on Cydonia oblonga Miller Anticancer Potential: Differential Antiproliferative Effect against Human Kidney and Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 3366-3370.	5.2	89
45	Vitis vinifera leaves towards bioactivity. Industrial Crops and Products, 2013, 43, 434-440.	5.2	89
46	Phenolic Compounds in External Leaves of Tronchuda Cabbage (Brassica oleracea L. var. costata DC). Journal of Agricultural and Food Chemistry, 2005, 53, 2901-2907.	5.2	88
47	Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chemistry, 2008, 110, 47-56.	8.2	88
48	Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: A natural source of bioactive compounds. Food Research International, 2013, 50, 167-175.	6.2	88
49	Effect of the Conservation Procedure on the Contents of Phenolic Compounds and Organic Acids in Chanterelle (Cantharellus cibarius) Mushroom. Journal of Agricultural and Food Chemistry, 2005, 53, 4925-4931.	5.2	86
50	Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract. PLoS ONE, 2013, 8, e59131.	2.5	85
51	Contents of Carboxylic Acids and Two Phenolics and Antioxidant Activity of Dried Portuguese Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2006, 54, 8530-8537.	5.2	84
52	Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. Journal of Pharmacy and Pharmacology, 2013, 65, 1681-1700.	2.4	84
53	Hydroxyl radical and hypochlorous acid scavenging activity of small Centaury (Centaurium) Tj ETQq1 1 0.78431-517-522.	4 rgBT /Ov 5.3	erlock 10 T 82
54	Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine, 2010, 17, 646-652.	5.3	82

#	Article	IF	CITATIONS
55	Chemical assessment and antioxidant capacity of pepper (Capsicum annuum L.) seeds. Food and Chemical Toxicology, 2013, 53, 240-248.	3.6	82
56	Quince (Cydonia oblongaMiller) Fruit Characterization Using Principal Component Analysis. Journal of Agricultural and Food Chemistry, 2005, 53, 111-122.	5.2	81
57	Chemical composition and antioxidant activity of tronchuda cabbage internal leaves. European Food Research and Technology, 2006, 222, 88-98.	3.3	81
58	Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity. Food Chemistry, 2012, 130, 671-678.	8.2	81
59	STEROL PROFILES IN 18 MACROALGAE OF THE PORTUGUESE COAST ¹ . Journal of Phycology, 2011, 47, 1210-1218.	2.3	80
60	Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chemistry, 2010, 123, 548-557.	8.2	79
61	Quantitation of Nine Organic Acids in Wild Mushrooms. Journal of Agricultural and Food Chemistry, 2005, 53, 3626-3630.	5. 2	78
62	Organic acids in two Portuguese chestnut (Castanea sativa Miller) varieties. Food Chemistry, 2007, 100, 504-508.	8.2	77
63	Organic acids composition of Cydonia oblonga Miller leaf. Food Chemistry, 2008, 111, 393-399.	8.2	77
64	Flavonoids and Phenolic Acids of Sage:  Influence of Some Agricultural Factors. Journal of Agricultural and Food Chemistry, 2000, 48, 6081-6084.	5.2	76
65	The Use of Flavonoids in Central Nervous System Disorders. Current Medicinal Chemistry, 2013, 20, 4694-4719.	2.4	75
66	Tomato (Lycopersicon esculentum) Seeds: New Flavonols and Cytotoxic Effect. Journal of Agricultural and Food Chemistry, 2010, 58, 2854-2861.	5.2	74
67	HPLC-DAD-MS/MS-ESI Screening of Phenolic Compounds in Pieris brassicae L. Reared on Brassica rapa var. <i>rapa</i> L. Journal of Agricultural and Food Chemistry, 2008, 56, 844-853.	5.2	73
68	Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chemistry, 2012, 135, 1253-1260.	8.2	73
69	New <i>C</i> -Deoxyhexosyl Flavones and Antioxidant Properties of <i>Passiflora edulis</i> Leaf Extract. Journal of Agricultural and Food Chemistry, 2007, 55, 10187-10193.	5.2	71
70	How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an ⟨i⟩in vivo⟨/i⟩ model for testing mitochondriaâ€ŧargeted drugs. British Journal of Pharmacology, 2013, 169, 1072-1090.	5.4	70
71	Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chemical Science, 2018, 9, 1740-1752.	7.4	69
72	Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease. Pharmacological Research, 2016, 103, 328-339.	7.1	67

#	Article	IF	CITATIONS
73	Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chemistry, 2017, 230, 463-474.	8.2	67
74	Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid. Food Chemistry, 2006, 98, 416-425.	8.2	66
75	Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 2007, 105, 1018-1025.	8.2	64
76	Phlorotannins: Towards New Pharmacological Interventions for Diabetes Mellitus Type 2. Molecules, 2017, 22, 56.	3.8	64
77	Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Marine Drugs, 2019, 17, 329.	4.6	64
78	Analysis of Vervain Flavonoids by HPLC/Diode Array Detector Method. Its Application to Quality Control. Journal of Agricultural and Food Chemistry, 1999, 47, 4579-4582.	5.2	63
79	<i>Lycopersicon esculentum</i> Seeds: An Industrial Byproduct as an Antimicrobial Agent. Journal of Agricultural and Food Chemistry, 2010, 58, 9529-9536.	5.2	63
80	Profiling phlorotannins from Fucus spp. of the Northern Portuguese coastline: Chemical approach by HPLC-DAD-ESI/MS and UPLC-ESI-QTOF/MS. Algal Research, 2018, 29, 113-120.	4.6	63
81	New Beverages of Lemon Juice Enriched with the Exotic Berries Maqui, AçaıÌ; and Blackthorn: Bioactive Components and in Vitro Biological Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 6571-6580.	5.2	62
82	Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential. Food Chemistry, 2012, 134, 2090-2096.	8.2	62
83	A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotoxicity Research, 2015, 28, 253-267.	2.7	62
84	Analysis of Phenolic Compounds in the Evaluation of Commercial Quince Jam Authenticity. Journal of Agricultural and Food Chemistry, 2000, 48, 2853-2857.	5.2	61
85	Influence of Two Fertilization Regimens on the Amounts of Organic Acids and Phenolic Compounds of Tronchuda Cabbage (Brassica oleraceaL. Var.costataDC). Journal of Agricultural and Food Chemistry, 2005, 53, 9128-9132.	5.2	60
86	Principal components of phenolics to characterize red Vinho Verde grapes: Anthocyanins or non-coloured compounds?. Talanta, 2008, 75, 1190-1202.	5.5	60
87	Glutathione and the Antioxidant Potential of Binary Mixtures with Flavonoids: Synergisms and Antagonisms. Molecules, 2013, 18, 8858-8872.	3.8	60
88	\hat{l}_{\pm} -Glucosidase and \hat{l}_{\pm} -amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose?. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118 , 322 - 327 .	2.8	60
89	Tronchuda cabbage (Brassica oleracea L. var. costata DC) seeds: Phytochemical characterization and antioxidant potential. Food Chemistry, 2007, 101, 549-558.	8.2	59
90	Multivariate Analysis of Tronchuda Cabbage (Brassica oleracea L. var.costataDC) Phenolics: Influence of Fertilizers. Journal of Agricultural and Food Chemistry, 2008, 56, 2231-2239.	5.2	58

#	Article	IF	Citations
91	Anti-Inflammatory Effect of Unsaturated Fatty Acids and Ergosta-7,22-dien-3-ol from Marthasterias glacialis: Prevention of CHOP-Mediated ER-Stress and NF-ÎB Activation. PLoS ONE, 2014, 9, e88341.	2.5	58
92	Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis L'Hér. Food Chemistry, 2012, 135, 112-121.	8.2	57
93	Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof. Marine Drugs, 2015, 13, 6453-6471.	4.6	56
94	Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chemistry, 2017, 235, 298-307.	8.2	54
95	Phenolic profile in the evaluation of commercial quince jellies authenticity. Food Chemistry, 2000, 71, 281-285.	8.2	53
96	Comparative Study on Free Amino Acid Composition of Wild Edible Mushroom Species. Journal of Agricultural and Food Chemistry, 2008, 56, 10973-10979.	5.2	53
97	Volatile composition of Catharanthus roseus (L.) G. Don using solid-phase microextraction and gas chromatography/mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 674-685.	2.8	53
98	Chemical Assessment and <i>in Vitro</i> Antioxidant Capacity of <i>Ficus carica</i> Latex. Journal of Agricultural and Food Chemistry, 2010, 58, 3393-3398.	5.2	53
99	Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines. Marine Drugs, 2011, 9, 852-862.	4.6	53
100	Anti-Inflammatory Potential of Monogalactosyl Diacylglycerols and a Monoacylglycerol from the Edible Brown Seaweed Fucus spiralis Linnaeus. Marine Drugs, 2014, 12, 1406-1418.	4.6	53
101	Neuroprotective effect of steroidal alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress. Journal of Steroid Biochemistry and Molecular Biology, 2014, 140, 106-115.	2.5	53
102	Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae. Marine Drugs, 2016, 14, 23.	4.6	53
103	Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE, 2018, 13, e0192872.	2.5	53
104	Inhibitory effect of Lavandula viridis on Fe2+-induced lipid peroxidation, antioxidant and anti-cholinesterase properties. Food Chemistry, 2011, 126, 1779-1786.	8.2	51
105	Inflorescences of Brassicacea species as source of bioactive compounds: A comparative study. Food Chemistry, 2008, 110, 953-961.	8.2	50
106	Metabolic and Bioactivity Insights into Brassica oleracea var. <i>acephala</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 8884-8892.	5. 2	50
107	Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var.) Tj ETQq $1\ 1\ 0$).784314 3.6	gBT/Overlo
108	Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacological Research, 2020, 155, 104702.	7.1	50

#	Article	IF	CITATIONS
109	<i>In vivo</i> Skin Irritation Potential of a <i> Castanea sativa </i> (Chestnut) Leaf Extract, a Putative Natural Antioxidant for Topical Application. Basic and Clinical Pharmacology and Toxicology, 2008, 103, 461-467.	2.5	49
110	Codium tomentosum and Plocamium cartilagineum: Chemistry and antioxidant potential. Food Chemistry, 2010, 119, 1359-1368.	8.2	49
111	Is Nitric Oxide Decrease Observed with Naphthoquinones in LPS Stimulated RAW 264.7 Macrophages a Beneficial Property?. PLoS ONE, 2011, 6, e24098.	2.5	49
112	Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential. Food and Chemical Toxicology, 2013, 57, 69-74.	3.6	49
113	Further Insight into the Latex Metabolite Profile of Ficus carica. Journal of Agricultural and Food Chemistry, 2010, 58, 10855-10863.	5.2	48
114	Marine natural pigments: Chemistry, distribution and analysis. Dyes and Pigments, 2014, 111, 124-134.	3.7	48
115	Free Water-Soluble Phenolics Profiling in Barley (Hordeum vulgare L.). Journal of Agricultural and Food Chemistry, 2009, 57, 2405-2409.	5. 2	47
116	Phenolic profile of hazelnut (Corylus Avellana L.) leaves cultivars grown in Portugal. Natural Product Research, 2005, 19, 157-163.	1.8	46
117	Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT-MS. Microchemical Journal, 2009, 93, 140-146.	4.5	45
118	Simple and reproducible HPLC–DAD–ESI-MS/MS analysis of alkaloids in Catharanthus roseus roots. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 65-69.	2.8	45
119	Approach to the study of <i>C</i> i>Spergularia rubra by highâ€performance liquid chromatographyâ€photodiode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 700-712.	1.5	45
120	Natural extracts as potential source of antioxidants to stabilize polyolefins. Journal of Applied Polymer Science, 2011, 119, 3553-3559.	2.6	45
121	Metabolic profile and biological activities of Lavandula pedunculata subsp. lusitanica (Chaytor) Franco: Studies on the essential oil and polar extracts. Food Chemistry, 2013, 141, 2501-2506.	8.2	45
122	Methoxylated Xanthones in the Quality Control of Small Centaury (Centaurium erythraea) Flowering Tops. Journal of Agricultural and Food Chemistry, 2002, 50, 460-463.	5.2	44
123	Analysis of non-coloured phenolics in red wine: Effect of Dekkera bruxellensis yeast. Food Chemistry, 2005, 89, 185-189.	8.2	44
124	Distinct fatty acid profile of ten brown macroalgae. Revista Brasileira De Farmacognosia, 2013, 23, 608-613.	1.4	44
125	Amino acids, fatty acids and sterols profile of some marine organisms from Portuguese waters. Food Chemistry, 2013, 141, 2412-2417.	8.2	44
126	Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chemistry, 2016, 194, 117-127.	8.2	44

#	Article	IF	CITATIONS
127	HPLC/DAD ANALYSIS OF PHENOLIC COMPOUNDS FROM LAVENDER AND ITS APPLICATION TO QUALITY CONTROL. Journal of Liquid Chromatography and Related Technologies, 2000, 23, 2563-2572.	1.0	43
128	Determination of low molecular weight volatiles in Ficus carica using HS-SPME and GC/FID. Food Chemistry, 2010, 121, 1289-1295.	8.2	43
129	Ellagic Acid and Derivatives from <i>Cochlospermum angolensis</i> Welw. Extracts: HPLC–DAD–ESI/MS <i>ⁿ</i> Profiling, Quantification and <i>In Vitro</i> Antiâ€depressant, Antiâ€cholinesterase and Antiâ€oxidant Activities. Phytochemical Analysis, 2013, 24, 534-540.	2.4	43
130	Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds. Food Chemistry, 2013, 141, 3636-3648.	8.2	43
131	The Consistency Between Phytotoxic Effects and the Dynamics of Allelochemicals Release from Eucalyptus globulus Leaves Used as Bioherbicide Green Manure. Journal of Chemical Ecology, 2018, 44, 658-670.	1.8	43
132	Characterisation of the phenolic profile of Boerhaavia diffusa L. by HPLC-PAD-MS/MS as a tool for quality control. Phytochemical Analysis, 2005, 16, 451-458.	2.4	42
133	Green tea: A promising anticancer agent for renal cell carcinoma. Food Chemistry, 2010, 122, 49-54.	8.2	42
134	Boerhaavia diffusa: Metabolite profiling of a medicinal plant from Nyctaginaceae. Food and Chemical Toxicology, 2009, 47, 2142-2149.	3.6	41
135	The pigments of kelps (Ochrophyta) as part of the flexible response to highly variable marine environments. Journal of Applied Phycology, 2016, 28, 3689-3696.	2.8	41
136	Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Research, 2017, 28, 1-8.	4.6	41
137	Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials, 2019, 9, 541.	4.1	41
138	Nonenzymatic \hat{l}_{\pm} -Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. Journal of Agricultural and Food Chemistry, 2015, 63, 6466-6474.	5.2	40
139	Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus. Marine Drugs, 2016, 14, 39.	4.6	40
140	Palmitic Acid and Ergosta-7,22-dien-3-ol Contribute to the Apoptotic Effect and Cell Cycle Arrest of an Extract from Marthasterias glacialis L. in Neuroblastoma Cells. Marine Drugs, 2014, 12, 54-68.	4.6	39
141	Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends in Food Science and Technology, 2019, 86, 153-171.	15.1	39
142	Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde―grapes. Analytica Chimica Acta, 2007, 583, 15-22.	5.4	38
143	Tronchuda Cabbage (Brassica oleracea L. var. <i>costata</i> DC): Scavenger of Reactive Nitrogen Species. Journal of Agricultural and Food Chemistry, 2008, 56, 4205-4211.	5.2	38
144	Chemical composition and biological screening of Capsella bursa-pastoris. Revista Brasileira De Farmacognosia, 2011, 21, 635-643.	1.4	38

#	Article	ΙF	Citations
145	Phytochemical investigations and biological potential screening with cellular and non-cellular models of globe amaranth (Gomphrena globosaL.) inflorescences. Food Chemistry, 2012, 135, 756-763.	8.2	38
146	A new insight on elderberry anthocyanins bioactivity: Modulation of mitochondrial redox chain functionality and cell redox state. Journal of Functional Foods, 2019, 56, 145-155.	3.4	38
147	Oxygen and Nitrogen Reactive Species Are Effectively Scavenged by Eucalyptus globulus Leaf Water Extract. Journal of Medicinal Food, 2009, 12, 175-183.	1.5	37
148	Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chemistry, 2011, 127, 1487-1495.	8.2	37
149	Inoculation of the Nonlegume <i>Capsicum annuum</i> (L.) with <i>Rhizobium</i> Strains. 1. Effect on Bioactive Compounds, Antioxidant Activity, and Fruit Ripeness. Journal of Agricultural and Food Chemistry, 2014, 62, 557-564.	5.2	37
150	Preliminary study of flavonols in port wine grape varieties. Food Chemistry, 2001, 73, 397-399.	8.2	36
151	Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food and Chemical Toxicology, 2009, 47, 1349-1354.	3.6	36
152	In Vitro Cultures of Brassica oleracea L. var.costataDC: Potential Plant Bioreactor for Antioxidant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2009, 57, 1247-1252.	5.2	36
153	Exploiting Catharanthus roseus roots: Source of antioxidants. Food Chemistry, 2010, 121, 56-61.	8.2	36
154	Further Knowledge on the Phenolic Profile of <i>Colocasia esculenta</i> (L.) Shott. Journal of Agricultural and Food Chemistry, 2012, 60, 7005-7015.	5.2	36
155	Chemical profiling and biological screening of Thymus lotocephalus extracts obtained by supercritical fluid extraction and hydrodistillation. Industrial Crops and Products, 2012, 36, 246-256.	5.2	36
156	Beneficial effects of white wine polyphenols-enriched diet on Alzheimer's disease-like pathology. Journal of Nutritional Biochemistry, 2018, 55, 165-177.	4.2	36
157	Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Research International, 2018, 106, 558-567.	6.2	35
158	Influence of Dekkera bruxellensis on the contents of anthocyanins, organic acids and volatile phenols of DÃ \pm o red wine. Food Chemistry, 2007, 100, 64-70.	8.2	34
159	A gas chromatography–mass spectrometry multi-target method for the simultaneous analysis of three classes of metabolites in marine organisms. Talanta, 2012, 100, 391-400.	5 . 5	34
160	Box–Behnken factorial design to obtain a phenolic-rich extract from the aerial parts of Chelidonium majus L Talanta, 2014, 130, 128-136.	5.5	34
161	Antioxidant and Proapoptotic Activities of <i>Sclerocarya birrea < /i>[(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2. BioMed Research International, 2015, 2015, 1-11.</i>	1.9	34
162	Evaluating the In Vitro Potential of Natural Extracts to Protect Lipids from Oxidative Damage. Antioxidants, 2020, 9, 231.	5.1	34

#	Article	IF	CITATIONS
163	<i>Rumex induratus</i> Leaves:  Interesting Dietary Source of Potential Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 5782-5789.	5.2	33
164	Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties. Food Chemistry, 2013, 141, 3480-3485.	8.2	33
165	Fatty acids from edible sea hares: anti-inflammatory capacity in LPS-stimulated RAW 264.7 cells involves iNOS modulation. RSC Advances, 2015, 5, 8981-8987.	3.6	33
166	Flavonoids in Neurodegeneration: Limitations and Strategies to Cross CNS Barriers. Current Medicinal Chemistry, 2016, 23, 4151-4174.	2.4	33
167	First report of non-coloured flavonoids inEchium plantagineumbee pollen: differentiation of isomers by liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 801-806.	1.5	32
168	Translating endoplasmic reticulum biology into the clinic: a role for ER-targeted natural products?. Natural Product Reports, 2015, 32, 705-722.	10.3	32
169	New chalcone-type compounds and 2-pyrazoline derivatives: synthesis and caspase-dependent anticancer activity. Future Medicinal Chemistry, 2020, 12, 493-509.	2.3	32
170	Do Cultivar, Geographical Location and Crop Season Influence Phenolic Profile of Walnut Leaves?. Molecules, 2008, 13, 1321-1332.	3.8	31
171	Volatile Constituents throughout Brassica oleracea L. Var. <i>acephala</i> Germination. Journal of Agricultural and Food Chemistry, 2009, 57, 6795-6802.	5.2	31
172	Effect of different extraction methodologies on the recovery of bioactive metabolites from Satureja parvifolia (Phil.) Epling (Lamiaceae). Industrial Crops and Products, 2013, 48, 49-56.	5.2	31
173	Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules, 2021, 26, 2331.	3.8	31
174	Screening of Antioxidant Compounds During Sprouting of Brassica oleracea L. var. costata DC. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 377-386.	1.1	30
175	Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves. Food Chemistry, 2012, 135, 748-755.	8.2	30
176	Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. Journal of Ethnopharmacology, 2020, 263, 113177.	4.1	30
177	Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases. Marine Drugs, 2014, 12, 2539-2589.	4.6	29
178	Tomato plant leaves: From by-products to the management of enzymes in chronic diseases. Industrial Crops and Products, 2016, 94, 621-629.	5.2	29
179	HPLC-DAD-ESI/MS n profiling of phenolic compounds from Lathyrus cicera L. seeds. Food Chemistry, 2017, 214, 678-685.	8.2	29
180	Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminaria ochroleuca: Influence of changing environmental conditions. Arabian Journal of Chemistry, 2020, 13, 45-58.	4.9	29

#	Article	IF	CITATIONS
181	Plant Secondary Metabolites in Cancer Chemotherapy: Where are We?. Current Pharmaceutical Biotechnology, 2012, 13, 632-650.	1.6	29
182	Antioxidative properties and phytochemical composition of Ballota nigra infusion. Food Chemistry, 2007, 105, 1396-1403.	8.2	28
183	Dracaena draco L. fruit: Phytochemical and antioxidant activity assessment. Food Research International, 2011, 44, 2182-2189.	6.2	28
184	Alkaloids in the valorization of European Lupinus spp. seeds crop. Industrial Crops and Products, 2017, 95, 286-295.	5.2	28
185	<i>Quercus ilex</i> L.: How season, Plant Organ and Extraction Procedure Can Influence Chemistry and Bioactivities. Chemistry and Biodiversity, 2017, 14, e1600187.	2.1	28
186	Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Marine Drugs, 2019, 17, 551.	4.6	28
187	Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. European Food Research and Technology, 2019, 245, 753-762.	3.3	28
188	Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes. Talanta, 2007, 74, 20-31.	5.5	27
189	<i>Leucopaxillus giganteus</i> Mycelium: Effect of Nitrogen Source on Organic Acids and Alkaloids . Journal of Agricultural and Food Chemistry, 2008, 56, 4769-4774.	5.2	27
190	Characterization of Ficus carica L. cultivars by DNA and secondary metabolite analysis: Is genetic diversity reflected in the chemical composition?. Food Research International, 2012, 49, 710-719.	6.2	27
191	Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. European Food Research and Technology, 2016, 242, 1447-1457.	3.3	27
192	Leaves and stem bark from Allophylus africanus P. Beauv.: An approach to anti-inflammatory properties and characterization of their flavonoid profile. Food and Chemical Toxicology, 2018, 118, 430-438.	3.6	27
193	<i>Piper betle</i> Leaves: Profiling Phenolic Compounds by HPLC/DAD–ESI/MS <i>ⁿ</i> and Antiâ€eholinesterase Activity. Phytochemical Analysis, 2014, 25, 453-460.	2.4	26
194	Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 234-249.	2.8	26
195	Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food Chemistry, 2018, 265, 233-241.	8.2	26
196	In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chemistry, 2020, 333, 127456.	8.2	26
197	Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC). Algal Research, 2020, 49, 101947.	4.6	26
198	Phenolic composition of hazelnut leaves: Influence of cultivar, geographical origin and ripening stage. Scientia Horticulturae, 2010, 126, 306-313.	3.6	25

#	Article	lF	Citations
199	Targeted metabolites and biological activities of Cydonia oblonga Miller leaves. Food Research International, 2012, 46, 496-504.	6.2	25
200	Effects of Colored and Noncolored Phenolics of <i>Echium plantagineum</i> L. Bee Pollen in Caco-2 Cells under Oxidative Stress Induced by <i>tert</i> Butyl Hydroperoxide. Journal of Agricultural and Food Chemistry, 2015, 63, 2083-2091.	5 . 2	25
201	Medicinal species as MTDLs: Turnera diffusa Willd. Ex Schult inhibits CNS enzymes and delays glutamate excitotoxicity in SH-SY5Y cells via oxidative damage. Food and Chemical Toxicology, 2017, 106, 466-476.	3 . 6	25
202	Influence of shading treatment on yield, morphological traits and phenolic profile of sweet basil (Ocimum basilicum L.). Scientia Horticulturae, 2019, 254, 91-98.	3.6	25
203	Free Amino Acids of Tronchuda Cabbage (Brassica oleracea L. Var. <i>costata</i> DC): Influence of Leaf Position (Internal or External) and Collection Time. Journal of Agricultural and Food Chemistry, 2008, 56, 5216-5221.	5.2	24
204	Volatile composition of <i>Brassica oleracea</i> L. var. <i>costata</i> DC leaves using solidâ€phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 2292-2300.	1.5	24
205	HPLC-DAD of phenolics in bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga. Journal of the Serbian Chemical Society, 2008, 73, 1161-1167.	0.8	23
206	Comparing the phenolic profile of Pilocarpus pennatifolius Lem. by HPLC–DAD–ESI/MS n with respect to authentication and enzyme inhibition potential. Industrial Crops and Products, 2015, 77, 391-401.	5.2	23
207	Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages. Biomolecules, 2019, 9, 400.	4.0	23
208	Variability in phenolic composition of hypericum Androsaemum. Natural Product Research, 2003, 17, 135-140.	1.8	22
209	Hypericum androsaemum infusion increases tert-butyl hydroperoxide-induced mice hepatotoxicity in vivo. Journal of Ethnopharmacology, 2004, 94, 345-351.	4.1	22
210	Tronchuda cabbage flavonoids uptake by Pieris brassicae. Phytochemistry, 2007, 68, 361-367.	2.9	22
211	Further Insights on the Carotenoid Profile of the Echinoderm Marthasterias glacialis L Marine Drugs, 2012, 10, 1498-1510.	4.6	22
212	Inoculation of the Nonlegume <i>Capsicum annuum</i> L. with <i>Rhizobium</i> Strains. 2. Changes in Sterols, Triterpenes, Fatty Acids, and Volatile Compounds. Journal of Agricultural and Food Chemistry, 2014, 62, 565-573.	5 . 2	22
213	Neurotoxicity of the steroidal alkaloids tomatine and tomatidine is RIP1 kinase- and caspase-independent and involves the eIF2α branch of the endoplasmic reticulum. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 178-186.	2.5	22
214	Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology, 2019, 133, 110749.	3 . 6	22
215	Comparison of different greenâ€extraction techniques and determination of the phytochemical profile and antioxidant activity of <scp><i>Echinacea angustifolia</i></scp> L. extracts. Phytochemical Analysis, 2019, 30, 547-555.	2.4	22
216	Tetraoxygenated Xanthones from Centaurium erythraea. Natural Product Research, 2000, 14, 319-323.	0.4	21

#	Article	IF	CITATIONS
217	Phenolics Metabolism in Insects: <i>Pieris brassicae</i> oleraceavar. <i>costata</i> Ecological Duo. Journal of Agricultural and Food Chemistry, 2009, 57, 9035-9043.	5.2	21
218	Highâ€performance liquid chromatographyâ€diode array detectionâ€electrospray ionization multiâ€stage mass spectrometric screening of an insect/plant system: the case of <i>Spodoptera littoralis</i> /ci>lycopersicon esculentum phenolics and alkaloids. Rapid Communications in Mass Spectrometry, 2011, 25, 1972-1980.	1.5	21
219	Influence of Tunisian Ficus carica fruit variability in phenolic profiles and in vitro radical scavenging potential. Revista Brasileira De Farmacognosia, 2012, 22, 1282-1289.	1.4	21
220	HPLC-DAD-ESI/MSn analysis of phenolic compounds for quality control of Grindelia robusta Nutt. and bioactivities. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 163-172.	2.8	21
221	Beverages of lemon juice and exotic noni and papaya with potential for anticholinergic effects. Food Chemistry, 2015, 170, 16-21.	8.2	21
222	A Comparative Study on Phytochemical Profiles and Biological Activities of Sclerocarya birrea (A.Rich.) Hochst Leaf and Bark Extracts. International Journal of Molecular Sciences, 2018, 19, 186.	4.1	21
223	Improving the knowledge on <i>Piper betle</i> : Targeted metabolite analysis and effect on acetylcholinesterase. Journal of Separation Science, 2010, 33, 3168-3176.	2.5	20
224	Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress. Plant Science, 2013, 198, 1-6.	3.6	20
225	In Vitro Anti-Inflammatory and Cytotoxic Effects of Aqueous Extracts from the Edible Sea Anemones Anemonia sulcata and Actinia equina. International Journal of Molecular Sciences, 2017, 18, 653.	4.1	20
226	In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. Journal of Ethnopharmacology, 2018, 211, 247-255.	4.1	20
227	Phlorotannins from Fucales: potential to control hyperglycemia and diabetes-related vascular complications. Journal of Applied Phycology, 2019, 31, 3143-3152.	2.8	20
228	Isolation and Structural Elucidation of 5-Formyl-2,3-Dihydroisocoumarin fromCentaurium ErythraeaAerial Parts. Natural Product Research, 2003, 17, 361-364.	1.8	19
229	Relevant principal component analysis applied to the characterisation of Portuguese heather honey. Natural Product Research, 2008, 22, 1560-1582.	1.8	19
230	Evaluation of Antioxidant, Anticholinesterase, and Antidiabetic Potential of Dry Leaves and Stems in <i>Tamarix aphylla</i> Growing Wild in Tunisia. Chemistry and Biodiversity, 2016, 13, 1747-1755.	2.1	19
231	Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. Journal of Ethnopharmacology, 2020, 248, 112312.	4.1	19
232	Echium plantagineum L. honey: Search of pyrrolizidine alkaloids and polyphenols, anti-inflammatory potential and cytotoxicity. Food Chemistry, 2020, 328, 127169.	8.2	19
233	Oak leaf extract as topical antioxidant: Free radical scavenging and iron chelating activities and <i>in vivo</i> skin irritation potential. BioFactors, 2008, 33, 267-279.	5.4	18
234	Effects of Echium plantagineum L. Bee Pollen on Basophil Degranulation: Relationship with Metabolic Profile. Molecules, 2014, 19, 10635-10649.	3.8	18

#	Article	IF	CITATIONS
235	Chemical profiling of edible seaweed (Ochrophyta) extracts and assessment of their in vitro effects on cell-free enzyme systems and on the viability of glutamate-injured SH-SY5Y cells. Food and Chemical Toxicology, 2018, 116, 196-206.	3.6	18
236	Insights into Natural Products in Inflammation. International Journal of Molecular Sciences, 2018, 19, 644.	4.1	18
237	Modulation of Basophils' Degranulation and Allergy-Related Enzymes by Monomeric and Dimeric Naphthoquinones. PLoS ONE, 2014, 9, e90122.	2.5	18
238	Phenolic compounds from Jacaranda caroba (Vell.) A. DC.: Approaches to neurodegenerative disorders. Food and Chemical Toxicology, 2013, 57, 91-98.	3.6	17
239	In vitro studies of \hat{l} ±-glucosidase inhibitors and antiradical constituents of Glandora diffusa (Lag.) D.C. Thomas infusion. Food Chemistry, 2013, 136, 1390-1398.	8.2	17
240	Phenolic profile of Douro wines and evaluation of their NO scavenging capacity in LPS-stimulated RAW 264.7 macrophages. Food Chemistry, 2014, 163, 16-22.	8.2	17
241	Isolation of Cells Specialized in Anticancer Alkaloid Metabolism by Fluorescence-Activated Cell Sorting. Plant Physiology, 2016, 171, 2371-2378.	4.8	17
242	HPLC-DAD-ESI/MSn phenolic profile and in vitro biological potential of Centaurium erythraea Rafn aqueous extract. Food Chemistry, 2019, 278, 424-433.	8.2	17
243	Jasonia glutinosa (L.) DC., a traditional herbal medicine, reduces inflammation, oxidative stress and protects the intestinal barrier in a murine model of colitis. Inflammopharmacology, 2020, 28, 1717-1734.	3.9	17
244	Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration. Marine Drugs, 2020, 18, 654.	4.6	17
245	The biotechnological potential of Asparagopsis armata: What is known of its chemical composition, bioactivities and current market?. Algal Research, 2021, 60, 102534.	4.6	17
246	Protective activity of Hypericum androsaemum infusion against tert-butyl hydroperoxide-induced oxidative damage in isolated rat hepatocytes. Journal of Ethnopharmacology, 2004, 92, 79-84.	4.1	16
247	HPLC–DAD analysis and in vitro enzyme inhibition: An integrated approach to predict herbal binary mixture behaviour employing median effect equation. Microchemical Journal, 2015, 119, 176-182.	4.5	16
248	Zinc Accumulation and Tolerance in <i>Solanum nigrum</i> Journal of Phytoremediation, 2015, 17, 272-279.	3.1	16
249	Accumulation of primary and secondary metabolites in edible jackfruit seed tissues and scavenging of reactive nitrogen species. Food Chemistry, 2017, 233, 85-95.	8.2	16
250	Anti-inflammatory properties of the stem bark from the herbal drug Vitex peduncularis Wall. ex Schauer and characterization of its polyphenolic profile. Food and Chemical Toxicology, 2017, 106, 8-16.	3.6	16
251	Further insights on tomato plant: Cytotoxic and antioxidant activity of leaf extracts in human gastric cells. Food and Chemical Toxicology, 2017, 109, 386-392.	3.6	16
252	UHPLC-MS/MS profiling of Aplysia depilans and assessment of its potential therapeutic use: Interference on iNOS expression in LPS-stimulated RAW 264.7 macrophages and caspase-mediated pro-apoptotic effect on SH-SY5Y cells. Journal of Functional Foods, 2017, 37, 164-175.	3.4	16

#	Article	IF	CITATIONS
253	Anti-Inflammatory Effects of 5α,8α-Epidioxycholest-6-en-3β-ol, a Steroidal Endoperoxide Isolated from Aplysia depilans, Based on Bioguided Fractionation and NMR Analysis. Marine Drugs, 2019, 17, 330.	4.6	16
254	Biological Evaluation of Naproxen–Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors. Pharmaceutics, 2020, 12, 122.	4.5	16
255	Targeted Metabolite Analysis and Antioxidant Potential of <i>Rumex induratus </i> . Journal of Agricultural and Food Chemistry, 2008, 56, 8184-8194.	5.2	15
256	HPLCâ€PADâ€atmospheric pressure chemical ionizationâ€MS metabolite profiling of cytotoxic carotenoids from the echinoderm <i>Marthasterias glacialis</i> (spiny seaâ€star). Journal of Separation Science, 2010, 33, 2250-2257.	2.5	15
257	Structural characterization of phenolics and betacyanins in <i>Gomphrena globosa</i> by highâ€performance liquid chromatographyâ€diode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3441-3446.	1.5	15
258	Assessing Jasminum grandiflorum L. authenticity by HPLC-DAD-ESI/MSn and effects on physiological enzymes and oxidative species. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 157-161.	2.8	15
259	Benzoquinones from Cyperus spp. trigger IRE1α-independent and PERK-dependent ER stress in human stomach cancer cells and are novel proteasome inhibitors. Phytomedicine, 2019, 63, 153017.	5.3	15
260	Pennyroyal and gastrointestinal cells: multi-target protection of phenolic compounds against t-BHP-induced toxicity. RSC Advances, 2015, 5, 41576-41584.	3.6	14
261	Chemical findings and in vitro biological studies to uphold the use of Ficus exasperata Vahl leaf and stem bark. Food and Chemical Toxicology, 2018, 112, 134-144.	3.6	14
262	Assessing the antioxidative properties and chemical composition of Linaria vulgarisinfusion. Natural Product Research, 2008, 22, 735-746.	1.8	13
263	Targeted Metabolite Analysis and Biological Activity of <i>Pieris brassicae</i> Fed with <ibrassica i="" rapa<=""> var. <i>rapa</i>), Journal of Agricultural and Food Chemistry, 2009, 57, 483-489.</ibrassica>	5.2	13
264	Headspace solid-phase microextraction and gas chromatography/ion trap-mass spectrometry applied to a living system: Pieris brassicae fed with kale. Food Chemistry, 2010, 119, 1681-1693.	8.2	13
265	Metabolic and biological prospecting of Coreopsis tinctoria. Revista Brasileira De Farmacognosia, 2012, 22, 350-358.	1.4	13
266	Digestive Gland from Aplysia depilans Gmelin: Leads for Inflammation Treatment. Molecules, 2015, 20, 15766-15780.	3.8	13
267	Volatile phenols depletion in red wine using molecular imprinted polymers. Journal of Food Science and Technology, 2015, 52, 7735-7746.	2.8	13
268	Spontaneous variation regarding grape berry skin color: A comprehensive study of berry development by means of biochemical and molecular markers. Food Research International, 2017, 97, 149-161.	6.2	13
269	Flavonoid Composition of Salacia senegalensis (Lam.) DC. Leaves, Evaluation of Antidermatophytic Effects, and Potential Amelioration of the Associated Inflammatory Response. Molecules, 2019, 24, 2530.	3.8	13
270	Activation of caspase-3 in gastric adenocarcinoma AGS cells by Xylopia aethiopica (Dunal) A. Rich. fruit and characterization of its phenolic fingerprint by HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2. Food Research International, 2021, 141, 110121.	6.2	13

#	Article	IF	CITATIONS
271	Marine Macroalgae, a Source of Natural Inhibitors of Fungal Phytopathogens. Journal of Fungi (Basel,) Tj ETQq1	l 0 ₃ 784314	rgBT /Over
272	Screening of Antioxidant Phenolic Compounds Produced by In Vitro Shoots of Brassica oleracea L. var. costata DC. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 230-240.	1.1	12
273	Determination of eighty-one volatile organic compounds in dietary Rumex induratus leaves by GC/IT-MS, using different extractive techniques. Microchemical Journal, 2009, 93, 67-72.	4.5	12
274	Phytochemical profiles and inhibitory effect on free radical-induced human erythrocyte damage of Dracaena draco leaf: A potential novel antioxidant agent. Food Chemistry, 2011, 124, 927-934.	8.2	12
275	Bioactive properties of Chamaerops humilis L.: antioxidant and enzyme inhibiting activities of extracts from leaves, seeds, pulp and peel. 3 Biotech, 2018, 8, 88.	2.2	12
276	Trichilia catigua and Turnera diffusa extracts: In vitro inhibition of tyrosinase, antiglycation activity and effects on enzymes and pathways engaged in the neuroinflammatory process. Journal of Ethnopharmacology, 2021, 271, 113865.	4.1	12
277	Recent Trends in High Throughput Analysis and Antioxidant Potential Screening for Phenolics. Current Pharmaceutical Analysis, 2008, 4, 137-150.	0.6	11
278	Pieris brassicae Inhibits Xanthine Oxidase. Journal of Agricultural and Food Chemistry, 2009, 57, 2288-2294.	5.2	11
279	Water extracts of Brassica oleracea var. costata potentiate paraquat toxicity to rat hepatocytes in vitro. Toxicology in Vitro, 2009, 23, 1131-1138.	2.4	11
280	Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide. Molecules, 2012, 17, 5269-5288.	3.8	11
281	Assessing the anthocyanic composition of Port wines and musts and their free radical scavenging capacity. Food Chemistry, 2012, 131, 885-892.	8.2	11
282	Nano- and Microdelivery Systems for Marine Bioactive Lipids. Marine Drugs, 2014, 12, 6014-6027.	4.6	11
283	The chemical composition on fingerprint of Glandora diffusa and its biological properties. Arabian Journal of Chemistry, 2017, 10, 583-595.	4.9	11
284	Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomedicine and Pharmacotherapy, 2021, 140, 111756.	5.6	11
285	Phenolic Profiles of Portuguese Olives. , 2010, , 177-186.		10
286	Toxicity and structure-activity relationship (SAR) of \hat{l}_{\pm}, \hat{l}^2 -dehydroamino acids against human cancer cell lines. Toxicology in Vitro, 2018, 47, 26-37.	2.4	10
287	Profiling of Heterobranchia Sea Slugs from Portuguese Coastal Waters as Producers of Anti-Cancer and Anti-Inflammatory Agents. Molecules, 2018, 23, 1027.	3.8	10
288	Host-defense peptides AC12, DK16 and RC11 with immunomodulatory activity isolated from Hypsiboas raniceps skin secretion. Peptides, 2019, 113, 11-21.	2.4	10

#	Article	IF	CITATIONS
289	Adding value to polyvinylpolypyrrolidone winery residue: A resource of polyphenols with neuroprotective effects and ability to modulate type 2 diabetes-relevant enzymes. Food Chemistry, 2020, 329, 127168.	8.2	10
290	Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Food Chemistry, 2021, 342, 128323.	8.2	10
291	A nanophytosomes formulation based on elderberry anthocyanins and Codium lipids to mitigate mitochondrial dysfunctions. Biomedicine and Pharmacotherapy, 2021, 143, 112157.	5.6	10
292	Fatty Acids in Marine Organisms: In the Pursuit of Bioactive Agents. Current Pharmaceutical Analysis, 2011, 7, 108-119.	0.6	10
293	<i>Brassica oleracea</i> var. <i>costata</i> : comparative study on organic acids and biomass production with other cabbage varieties. Journal of the Science of Food and Agriculture, 2009, 89, 1083-1089.	3.5	9
294	Exploratory Studies on the <i>in Vitro</i> Antiâ€inflammatory Potential of Two Herbal Teas (<i>Annona) Tj ETQqC Chemistry and Biodiversity, 2017, 14, e1700002.</i>	0 0 0 rgBT 2.1	/Overlock 10 9
295	Apparent digestibility coefficients of European grain legumes in rainbow trout (<i>Oncorhynchus) Tj ETQq1 1 0.7</i>	84314 rgE 2.7	BT _g /Overlock
296	An egg yolk's phospholipid-pennyroyal nootropic nanoformulation modulates monoamino oxidase-A (MAO-A) activity in SH-SY5Y neuronal model. Journal of Functional Foods, 2018, 46, 335-344.	3.4	9
297	Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics, 2021, 13, 1930.	4.5	9
298	HPLC Determination of Free Amino Acids Profile of Dão Red Wine: Effect of Dekkera bruxellensis Contamination. Journal of Liquid Chromatography and Related Technologies, 2007, 30, 1371-1383.	1.0	8
299	Recent Patents on Proteasome Inhibitors of Natural Origin. Recent Patents on Anti-Cancer Drug Discovery, 2017, 12, 4-15.	1.6	8
300	Adding value to marine invaders by exploring the potential of Sargassum muticum (Yendo) Fensholt phlorotannin extract on targets underlying metabolic changes in diabetes. Algal Research, 2021, 59, 102455.	4.6	8
301	Homo-monoterpenic compounds as chemical markers for Cydonia oblonga Miller. Food Chemistry, 2007, 100, 331-338.	8.2	7
302	Metabolic fate of dietary volatile compounds in Pieris brassicae. Microchemical Journal, 2009, 93, 99-109.	4.5	7
303	Relationships of Echium plantagineum L. bee pollen, dietary flavonoids and their colonic metabolites with cytochrome P450 enzymes and oxidative stress. RSC Advances, 2016, 6, 6084-6092.	3.6	7
304	Cassia sieberiana DC. leaves modulate LPS-induced inflammatory response in THP-1Âcells and inhibit eicosanoid-metabolizing enzymes. Journal of Ethnopharmacology, 2021, 269, 113746.	4.1	7
305	Lessons from the Sea. Studies in Natural Products Chemistry, 2013, 40, 205-228.	1.8	6
306	A New Iced Tea Base Herbal Beverage with Spergularia rubra Extract: Metabolic Profile Stability and In Vitro Enzyme Inhibition. Journal of Agricultural and Food Chemistry, 2013, 61, 8650-8656.	5.2	6

#	Article	IF	CITATIONS
307	Synthesis and preliminary biological evaluation of new phenolic and catecholic dehydroamino acid derivatives. Tetrahedron, 2017, 73, 6199-6209.	1.9	6
308	Hydrophilic Carbon Nanomaterials: Characterisation by Physical, Chemical, and Biological Assays. ChemMedChem, 2019, 14, 699-711.	3.2	6
309	New Insight on the Bioactivity of Solanum aethiopicum Linn. Growing in Basilicata Region (Italy): Phytochemical Characterization, Liposomal Incorporation, and Antioxidant Effects. Pharmaceutics, 2022, 14, 1168.	4.5	6
310	Screening of a Marine Algal Extract for Antifungal Activities. Methods in Molecular Biology, 2015, 1308, 411-420.	0.9	5
311	Toxicity of phenolipids: Protocatechuic acid alkyl esters trigger disruption of mitochondrial membrane potential and caspase activation in macrophages. Chemistry and Physics of Lipids, 2017, 206, 16-27.	3.2	5
312	Valorisation of Mangifera indica crop biomass residues. Industrial Crops and Products, 2018, 124, 284-293.	5.2	5
313	Trace elements in wild edible Aplysia species: Relationship with the desaturation–elongation indexes of fatty acids. Chemosphere, 2018, 208, 682-690.	8.2	5
314	Novel styrylpyrazole-glucosides and their dioxolo-bridged doppelgangers: synthesis and cytotoxicity. New Journal of Chemistry, 2019, 43, 8299-8310.	2.8	5
315	Inhibition of Proinflammatory Enzymes and Attenuation of IL-6 in LPS-Challenged RAW 264.7 Macrophages Substantiates the Ethnomedicinal Use of the Herbal Drug Homalium bhamoense Cubitt & W.W.Sm. International Journal of Molecular Sciences, 2020, 21, 2421.	4.1	5
316	HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn characterization of polyphenols in the leaves of Neocarya macrophylla (Sabine) Prance ex F. White and cytotoxicity to gastric carcinoma cells. Food Research International, 2022, 155, 111082.	6.2	5
317	Brassica oleracea L. Var. costata DC and Pieris brassicae L. Aqueous Extracts Reduce Methyl Methanesulfonate-Induced DNA Damage in V79 Hamster Lung Fibroblasts. Journal of Agricultural and Food Chemistry, 2012, 60, 5380-5387.	5.2	4
318	Ethnopharmacological use of Cymbopogon citratus (DC.) Stapf and Cymbopogon schoenanthus (L.) Spreng.: Anti-inflammatory potential of phenol-rich extracts. Porto Biomedical Journal, 2017, 2, 216-217.	1.0	4
319	Centaurium Erythraea Extracts Exert Vascular Effects through Endothelium- and Fibroblast-dependent Pathways. Planta Medica, 2020, 86, 121-131.	1.3	4
320	Trichilia catigua and Turnera diffusa phyto-phospholipid nanostructures: Physicochemical characterization and bioactivity in cellular models of induced neuroinflammation and neurotoxicity. International Journal of Pharmaceutics, 2022, 620, 121774.	5.2	4
321	Depressive Disorders: Prevalence, Costs, and Theories. , 2016, , 1-41.		3
322	GC-MS Lipidomic Profiling of the Echinoderm Marthasterias glacialis and Screening for Activity Against Human Cancer and Non-Cancer Cell Lines. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 450-457.	1.1	3
323	"Omics―Technologies. , 2015, , 25-39.		2
324	Exploring Montagu's crab: Primary and secondary metabolites and enzyme inhibition. Arabian Journal of Chemistry, 2019, 12, 4017-4025.	4.9	2

#	Article	IF	CITATIONS
325	Gustavia gracillima Miers. flowers effects on enzymatic targets underlying metabolic disorders and characterization of its polyphenolic content by HPLC-DAD-ESI/MS. Food Research International, 2020, 137, 109694.	6.2	2
326	Brassica Seeds., 2011,, 83-91.		1
327	Valorisation of the industrial waste of Chukrasia tabularis A.Juss.: Characterization of the leaves phenolic constituents and antidiabetic-like effects. Industrial Crops and Products, 2022, 185, 115100.	5.2	1
328	Phenolic Compounds in Catharanthus roseus. , 2013, , 2093-2106.		0
329	Homarine Alkyl Ester Derivatives as Promising Acetylcholinesterase Inhibitors. ChemMedChem, 2021, 16, 3315-3325.	3.2	O
330	Metabolomic Analysis of Natural Products. , 2012, , 1-19.		O