Bryan K Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749168/publications.pdf

Version: 2024-02-01

623734 642732 3,512 24 14 23 citations g-index h-index papers 25 25 25 5206 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	AhR Regulates Peptidoglycan-Induced Inflammatory Gene Expression in Human Keratinocytes. Journal of Innate Immunity, 2022, 14, 124-134.	3.8	11
2	Spectrum of severe ocular complications following dupilumab exposure: A perspective from the ophthalmology clinic. Journal of the American Academy of Dermatology, 2022, 87, 469-472.	1.2	2
3	Glucocorticoids promote CCL20 expression in keratinocytes. British Journal of Dermatology, 2021, 185, 1200-1208.	1.5	8
4	A genome-wide long noncoding RNA CRISPRi screen identifies <i>PRANCR</i> as a novel regulator of epidermal homeostasis. Genome Research, 2020, 30, 22-34.	5.5	59
5	Research Techniques Made Simple: CRISPR Genetic Screens. Journal of Investigative Dermatology, 2020, 140, 723-728.e1.	0.7	11
6	HOPX Is a ZNF750 Target that Promotes Late Epidermal Differentiation. Journal of Investigative Dermatology, 2019, 139, 2039-2042.e2.	0.7	4
7	Agminated blue nevus with a GNAQ mutation: A case report and review of the literature. Journal of Cutaneous Pathology, 2019, 46, 130-133.	1.3	12
8	Aging-Associated Decline of Epidermal PSMD8 Contributes to Impaired Skin Function. Journal of Investigative Dermatology, 2018, 138, 976-978.	0.7	8
9	Postzygotic Mutations in Beta-Actin Are Associated with Becker's Nevus and Becker's Nevus Syndrome. Journal of Investigative Dermatology, 2017, 137, 1795-1798.	0.7	38
10	Patient satisfaction in dermatologic care delivered by a medical–student-run free clinic. Journal of the American Academy of Dermatology, 2016, 74, 1265-1267.	1.2	6
11	Mutational profile of primary dermal melanoma: A case series. Journal of the American Academy of Dermatology, 2016, 75, 1263-1265.e5.	1.2	7
12	CALML5 is a ZNF750- and TINCR-induced protein that binds stratifin to regulate epidermal differentiation. Genes and Development, 2015, 29, 2225-2230.	5.9	61
13	Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346, 941-945.	12.6	609
14	Mosaic Activating RAS Mutations in Nevus Sebaceus and Nevus Sebaceus Syndrome. Journal of Investigative Dermatology, 2013, 133, 824-827.	0.7	55
15	Activating < i>HRAS < /i>Mutation in Agminated Spitz Nevi Arising in a Nevus Spilus. JAMA Dermatology, 2013, 149, 1077.	4.1	45
16	X-Chromosome Inactivation and Skin Disease. Journal of Investigative Dermatology, 2008, 128, 2753-2759.	0.7	52
17	Small RNAs in development and disease. Journal of the American Academy of Dermatology, 2008, 59, 725-737.	1.2	63
18	Intersection of the RNA Interference and X-Inactivation Pathways. Science, 2008, 320, 1336-1341.	12.6	263

#	Article	IF	CITATION
19	Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome. Science, 2008, 322, 750-756.	12.6	1,477
20	X-Chromosome Inactivation. , 2006, , 2013-2019.		1
21	A Transient Heterochromatic State in Xist Preempts X Inactivation Choice without RNA Stabilization. Molecular Cell, 2006, 21, 617-628.	9.7	281
22	X-Chromosome Kiss and Tell: How the Xs Go Their Separate Ways. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 429-437.	1.1	24
23	Differential Methylation of <i>Xite</i> and CTCF Sites in <i>Tsix</i> Mirrors the Pattern of X-Inactivation Choice in Mice. Molecular and Cellular Biology, 2006, 26, 2109-2117.	2.3	52
24	Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nature Genetics, 1999, 22, 164-167.	21.4	361