Georgiana E Purdy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2749005/publications.pdf

Version: 2024-02-01

28 papers 1,325 citations

623734 14 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

2183 citing authors

#	Article	IF	CITATIONS
1	<i>Mycobacterium tuberculosis</i> and the environment within the phagosome. Immunological Reviews, 2007, 219, 37-54.	6.0	314
2	Lysosomal killing of <i>Mycobacterium </i> mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6031-6036.	7.1	305
3	MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11241-11246.	7.1	94
4	MmpL11 Protein Transports Mycolic Acid-containing Lipids to the Mycobacterial Cell Wall and Contributes to Biofilm Formation in Mycobacterium smegmatis. Journal of Biological Chemistry, 2013, 288, 24213-24222.	3.4	93
5	Decreased outer membrane permeability protects mycobacteria from killing by ubiquitinâ€derived peptides. Molecular Microbiology, 2009, 73, 844-857.	2.5	69
6	Crystal Structure of the Transcriptional Regulator Rv0678 of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289, 16526-16540.	3.4	65
7	MmpL Proteins in Physiology and Pathogenesis of M. tuberculosis. Microorganisms, 2019, 7, 70.	3.6	63
8	The Mycobacterium tuberculosis MmpL11 Cell Wall Lipid Transporter Is Important for Biofilm Formation, Intracellular Growth, and Nonreplicating Persistence. Infection and Immunity, 2017, 85, .	2.2	54
9	Diphenylether-Modified 1,2-Diamines with Improved Drug Properties for Development against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 500-508.	3.8	36
10	Kinetics of phosphatidylinositol-3-phosphate acquisition differ between IgG bead-containing phagosomes and Mycobacterium tuberculosis-containing phagosomes. Cellular Microbiology, 2005, 7, 1627-1634.	2.1	32
11	Lysosomal ubiquitin and the demise of Mycobacterium tuberculosis. Cellular Microbiology, 2007, 9, 2768-2774.	2.1	29
12	Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2015, 290, 28559-28574.	3.4	29
13	Structural and Functional Characterization of Mycobactericidal Ubiquitin-Derived Peptides in Model and Bacterial Membranes. Biochemistry, 2012, 51, 9922-9929.	2.5	24
14	Characterization of mycobacterial triacylglycerols and monomeromycolyl diacylglycerols from Mycobacterium smegmatis biofilm by electrospray ionization multiple-stage and high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 7415-7426.	3.7	16
15	Structural and functional evidence that lipoprotein LpqN supports cell envelope biogenesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2019, 294, 15711-15723.	3.4	14
16	Killing < i > Mycobacterium tuberculosis In Vitro < /i > : What Model Systems Can Teach Us. Microbiology Spectrum, 2017, 5, .	3.0	13
17	Ubiquitin Trafficking to the Lysosome: Keeping the House Tidy and Getting Rid of Unwanted Guests. Autophagy, 2007, 3, 399-401.	9.1	12
18	Mycobacterium smegmatis RoxY Is a Repressor of <i>oxyS </i> oxyS oxydative Stress and Bactericidal Ubiquitin-Derived Peptides. Journal of Bacteriology, 2011, 193, 6824-6833.	2.2	12

#	Article	IF	CITATIONS
19	Crystal structure of the <i>Mycobacterium tuberculosis</i> transcriptional regulator Rv0302. Protein Science, 2015, 24, 1942-1955.	7.6	11
20	Taking Out TB–Lysosomal Trafficking and Mycobactericidal Ubiquitin-Derived Peptides. Frontiers in Microbiology, 2011, 2, 7.	3 . 5	8
21	Autophagic Killing Effects against Mycobacterium tuberculosis by Alveolar Macrophages from Young and Aged Rhesus Macaques. PLoS ONE, 2013, 8, e66985.	2.5	8
22	Modulation of the M. tuberculosis cell envelope between replicating and non-replicating persistent bacteria. Tuberculosis, 2020, 125, 102007.	1.9	8
23	Confinement-Induced Drug-Tolerance in Mycobacteria Mediated by an Efflux Mechanism. PLoS ONE, 2015, 10, e0136231.	2.5	7
24	Complete Characterization of Polyacyltrehaloses from <i>Mycobacterium tuberculosis</i> H37Rv Biofilm Cultures by Multiple-Stage Linear Ion-Trap Mass Spectrometry Reveals a New Tetraacyltrehalose Family. Biochemistry, 2021, 60, 381-397.	2.5	5
25	Identification of residues important for M. tuberculosis MmpL11 function reveals that function is modulated by phosphorylation in the Câ€terminal domain. Molecular Microbiology, 2021, 115, 208-221.	2.5	4
26	NtrBC and Nac Contribute to Efficient Shigella flexneri Intracellular Replication. Journal of Bacteriology, 2014, 196, 2578-2586.	2.2	0
27	Reply to Brennan, "Biofilms and Mycobacterium tuberculosis― Infection and Immunity, 2017, 85, .	2.2	0
28	Killing Mycobacterium tuberculosis In Vitro: What Model Systems Can Teach Us., 2017,, 541-556.		0