Arpita Saha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2748629/publications.pdf

Version: 2024-02-01

		1684188	1872680	
7	191	5	6	
papers	citations	h-index	g-index	
7	7	7	279	
,		, 1 1		
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Family of Double-Cubane Mn ₄ Ln ₂ (Ln = Gd, Tb, Dy, Ho) and Mn ₄ Y ₂ Complexes: A New Mn ₄ Tb ₂ Single-Molecule Magnet. Inorganic Chemistry, 2011, 50, 10476-10485.	4.0	83
2	Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid. Energy, 2021, 225, 120231.	8.8	44
3	New Mixed-Valent Mn Clusters from the Use of <i>N</i> , <i>N</i> , <i>N\di>,<i>N\di>,<i>N\di>,<i>N\di>,<i>N\di>,<i>N\di>,<i>N\di>,<i>N\di>,<i>N\di>,<i>N\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i>\di>,<i \di="">,<i \di="">,<!-- \di-->,<!-- \di-->,<!-- \di-->,<!-- \di-->,,,<!--</td--><td>4.0</td><td>31</td></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	4.0	31
4	Removal of a potentially hazardous chemical, tetrakis (hydroxymethyl) phosphonium chloride from water using biochar as a medium of adsorption. Environmental Technology and Innovation, 2018, 12, 196-210.	6.1	21
5	Synthesis, characterization, computational study, and biological relevance of a family of isostructural, mononuclear Ln (Ln = Gd, Tb, Dy, Ho, Er) complexes containing pyridoxine, an essential ingredient of vitamin B6 enzyme. Inorganica Chimica Acta, 2017, 464, 172-181.	2.4	10
6	Synthesis and characterization of two new mixed-valent Mn6 complexes derived from a well-explored 2â€'hydroxymethyl pyridine along with the use of newly employed carboxylate ions. Inorganic Chemistry Communication, 2018, 97, 139-143.	3.9	2
7	Synthesis, structural variation, and magnetic properties of two polynuclear Mn-based complexes derived from 4,5-Bis(hydroxymethyl)-2-methylpyridin-3-ol. Inorganic Chemistry Communication, 2020, 121, 108226.	3.9	0