
Anthony Hj Paterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lactose: Production, Applications. , 2022, , 764-770.		Ο
2	The effect of polysaccharide blends and salts on the glass transition temperature of the monosaccharide glucose. Journal of Food Engineering, 2022, 322, 110961.	5.2	5
3	Prediction of the effect of water on the glass transition temperature of low molecular weight and polysaccharide mixtures. Food Hydrocolloids, 2022, 128, 107573.	10.7	4
4	Prediction of the glass transition temperature of low molecular weight components and polysaccharide mixtures. Journal of Food Engineering, 2021, 292, 110345.	5.2	9
5	Theoretical prediction of atomization performance of fibre suspensions and the effect of feed temperature and air velocity. Journal of Food Engineering, 2020, 269, 109742.	5.2	3
6	Measuring viscosity of supersaturated lactose solutions using dynamic light scattering. International Dairy Journal, 2020, 102, 104596.	3.0	2
7	Development of hierarchical surface roughness on porous poly (vinylidene fluoride) membrane for membrane distillation process. Polymer Engineering and Science, 2020, 60, 1686-1698.	3.1	12
8	Mathematical approach to lipid oxidation of goat infant formula powder. International Dairy Journal, 2020, 109, 104747.	3.0	9
9	Atomization behaviour of juice-fibre suspensions in a two-fluid nozzle. Journal of Food Engineering, 2019, 256, 53-60.	5.2	6
10	Understanding the shear and extensional properties of pomace-fibre suspensions prior to the spray drying process. LWT - Food Science and Technology, 2019, 99, 138-147.	5.2	9
11	Effect of autogenous pressure on volatile pyrolysis products. Fuel, 2018, 225, 80-88.	6.4	6
12	Effect of homogenisation and preheat treatment of fresh, recombined and reconstituted whole milk on subsequent fouling of UHT sterilisation plant. International Dairy Journal, 2018, 87, 16-25.	3.0	6
13	Laminar flow continuous settling crystalliser. Part 1. Initial exploration. International Dairy Journal, 2017, 72, 1-13.	3.0	1
14	Laminar flow continuous settling crystalliser. Part 2. Modifications. International Dairy Journal, 2017, 72, 14-22.	3.0	0
15	The effect of temperature on the development of browning of amorphous and crystalline lactose. International Dairy Journal, 2017, 73, 63-67.	3.0	2
16	Secondary nucleation studies on alpha lactose monohydrate under stirred conditions. International Dairy Journal, 2017, 66, 61-67.	3.0	5
17	Lactose processing: From fundamental understanding to industrial application. International Dairy Journal, 2017, 67, 80-90.	3.0	30
18	Lactose and Oligosaccharides: Lactose: Production, Applications. , 2016, , .		3

Lactose and Oligosaccharides: Lactose: Production, Applications. , 2016, , . 18

2

ANTHONY HJ PATERSON

#	Article	IF	CITATIONS
19	Amorphous lactose crystallisation kinetics. International Dairy Journal, 2016, 56, 22-28.	3.0	13
20	Nucleation of lactose using continuous orifice flow. International Dairy Journal, 2016, 61, 148-154.	3.0	3
21	The effect of agitation on the nucleation of α-lactose monohydrate. International Dairy Journal, 2016, 61, 114-119.	3.0	7
22	A mathematical model based parametric sensitivity analysis of an evaporative crystallizer for lactose monohydrate. Food and Bioproducts Processing, 2016, 97, 1-11.	3.6	9
23	Mathematical modelling and analysis of an industrial scale evaporative crystallizer producing lactose monohydrate. Journal of Food Engineering, 2015, 154, 49-57.	5.2	14
24	Caking Development in Lemon Juice Powder. Procedia Engineering, 2015, 102, 142-149.	1.2	8
25	Lactose Caking: Influence of the Particle Size Distribution and the Water Content. Procedia Engineering, 2015, 102, 114-122.	1.2	19
26	Correlation between Powder Flow Properties Measured by Shear Testing and Hausner Ratio. Procedia Engineering, 2015, 102, 218-225.	1.2	37
27	Measurement of the viscosity of freeze dried amorphous lactose near the glass transition temperature. International Dairy Journal, 2015, 43, 27-32.	3.0	9
28	Effect of galacto-oligosaccharide concentration on the kinetics of lactose crystallisation. International Dairy Journal, 2015, 41, 26-31.	3.0	7
29	Shear testing of lactose powders: The influence of consolidation stress and particle size on bulk density and estimated cohesion. Advanced Powder Technology, 2014, 25, 1164-1170.	4.1	10
30	Cohesion of lactose powders at low consolidation stresses. Advanced Powder Technology, 2013, 24, 796-800.	4.1	20
31	Relating Rice Grain Quality to Conditions during Sun Drying. International Journal of Food Engineering, 2013, 9, 385-391.	1.5	4
32	A Mathematical Model Of Solar Drying Of Rice. International Journal of Food Engineering, 2012, 8, .	1.5	3
33	Measurement of the Effective Diffusion Coefficient of Water in Spray Dried Amorphous Lactose Particles. Procedia Food Science, 2011, 1, 1924-1931.	0.6	1
34	Initial work on developing a cooking protocol for producing re-structured meat under controlled conditions. Procedia Food Science, 2011, 1, 662-666.	0.6	3
35	Primary nucleation of alpha-lactose monohydrate: The effect of supersaturation and temperature. International Dairy Journal, 2011, 21, 455-461.	3.0	32
36	Lactose and Oligosaccharides Lactose: Production, Applications. , 2011, , 196-201.		7

ANTHONY HJ PATERSON

#	Article	IF	CITATIONS
37	Stokes shape factor for lactose crystals. Advanced Powder Technology, 2011, 22, 454-457.	4.1	6
38	Study on lactose attrition inside the mixing cell of a laser diffraction particle sizer using a novel attrition index. Powder Technology, 2011, 208, 669-675.	4.2	13
39	Nucleation of Alpha lactose monohydrate induced using flow through a venturi orifice. Journal of Crystal Growth, 2010, 312, 800-807.	1.5	9
40	Droplet impact and spreading on lecithinated anhydrous milkfat surfaces. Journal of Food Engineering, 2009, 90, 525-530.	5.2	8
41	The practical implications of temperature induced moisture migration in bulk lactose. Journal of Food Engineering, 2009, 91, 85-90.	5.2	12
42	Stickiness of skim milk powder using the particle gun technique. International Dairy Journal, 2009, 19, 137-141.	3.0	20
43	Transformation of lactose for value-added ingredients. , 2009, , 625-643.		6
44	Production and Uses of Lactose. , 2009, , 105-120.		21
45	Single droplet drying: Transition from the effective diffusion model to a modified receding interface model. Powder Technology, 2008, 179, 184-189.	4.2	20
46	Reduction of alpha lactose monohydrate build-up in pneumatic conveying lines: The use of rubber lined bends. Powder Technology, 2008, 187, 195-199.	4.2	2
47	Prediction of the onset of caking in sucrose from temperature induced moisture movement. Journal of Food Engineering, 2008, 88, 466-473.	5.2	9
48	Stickiness curves of high fat dairy powders using the particle gun. International Dairy Journal, 2007, 17, 998-1005.	3.0	21
49	Droplet impact and spreading: Droplet formulation effects. Chemical Engineering Science, 2007, 62, 2336-2345.	3.8	55
50	Air-suspension particle coating in the food industry: Part I — state of the art. Powder Technology, 2007, 171, 25-33.	4.2	94
51	Air-suspension coating in the food industry: Part II — micro-level process approach. Powder Technology, 2007, 171, 34-45.	4.2	46
52	Stickiness of maltodextrins using probe tack test during in-situ drying. Journal of Food Engineering, 2007, 80, 859-868.	5.2	19
53	Stickiness during drying of amorphous skin-forming solutions using a probe tack test. Journal of Food Engineering, 2007, 81, 647-656.	5.2	16
54	Glass transition related cohesion of amorphous sugar powders. Journal of Food Engineering, 2006, 77, 997-1006.	5.2	97

ANTHONY HJ PATERSON

#	Article	IF	CITATIONS
55	Effects of capillary condensation on the caking of bulk sucrose. Journal of Food Engineering, 2006, 77, 887-895.	5.2	49
56	Effect of Preheating on Fouling of a Pilot Scale UHT Sterilizing Plant by Recombined, Reconstituted and Fresh Whole Milks. Food and Bioproducts Processing, 2006, 84, 279-285.	3.6	13
57	The contribution of milk fat towards the caking of dairy powders. International Dairy Journal, 2005, 15, 85-91.	3.0	61
58	The prediction of moisture sorption isotherms for dairy powders. International Dairy Journal, 2005, 15, 411-418.	3.0	102
59	Development of stickiness in amorphous lactose at constant Tâ^'Tg levels. International Dairy Journal, 2005, 15, 513-519.	3.0	97
60	A constant humidity air supply system for pilot scale applications. International Journal of Food Science and Technology, 2002, 37, 369-374.	2.7	5
61	A mathematical model for lactose dissolution, part II. Dissolution below the alpha lactose solubility limit. Journal of Food Engineering, 1998, 38, 15-25.	5.2	18
62	A mathematical model for lactose dissolution. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1993, 53, B25-B33.	0.1	10
63	Price Sensitivity of Bioethanol Produced in New Zealand from Pinus radiata Wood. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1989, 11, 135-150.	0.5	12
64	Solids circulation in a dual-spouted bed flow loop. Powder Technology, 1983, 35, 171-179.	4.2	4