
Philip C Stevenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747400/publications.pdf Version: 2024-02-01

DHILLD C STEVENSON

#	Article	IF	CITATIONS
1	The diversity of aphid parasitoids in <scp>East Africa</scp> and implications for biological control. Pest Management Science, 2022, 78, 1109-1116.	3.4	9
2	Dietary PUFAs drive diverse system-level changes in lipid metabolism. Molecular Metabolism, 2022, 59, 101457.	6.5	3
3	Field Margin Plants Support Natural Enemies in Sub-Saharan Africa Smallholder Common Bean Farming Systems. Plants, 2022, 11, 898.	3.5	3
4	Incorporating citizen science to advance the Natural Capital approach. Ecosystem Services, 2022, 54, 101419.	5.4	1
5	Understanding effects of floral products on bee parasites: Mechanisms, synergism, and ecological complexity. International Journal for Parasitology: Parasites and Wildlife, 2022, 17, 244-256.	1.5	7
6	Critical links between biodiversity and health in wild bee conservation. Trends in Ecology and Evolution, 2022, 37, 309-321.	8.7	48
7	Natural processes influencing pollinator health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210154.	4.0	6
8	Pollinator selection against toxic nectar as a key facilitator of a plant invasion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210168.	4.0	4
9	Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210162.	4.0	13
10	Elements of agroecological pest and disease management. Elementa, 2022, 10, .	3.2	5
11	Field margins and botanical insecticides enhance <i>Lablab purpureus</i> yield by reducing aphid pests and supporting natural enemies. Journal of Applied Entomology, 2022, 146, 838-849.	1.8	7
12	Plant-Rich Field Margins Influence Natural Predators of Aphids More Than Intercropping in Common Bean. Insects, 2022, 13, 569.	2.2	1
13	Effects of hydroxycinnamic acid esters on sweetpotato weevil feeding and oviposition and interactions with Bacillus thuringiensis proteins. Journal of Pest Science, 2021, 94, 783-794.	3.7	5
14	Pollen sterols are associated with phylogeny and environment but not with pollinator guilds. New Phytologist, 2021, 230, 1169-1184.	7.3	26
15	Traffic Analysis Reveals the Impact of Dietary Intake on Lipid Metabolism. FASEB Journal, 2021, 35, .	0.5	0
16	Agri-environment scheme nectar chemistry can suppress the social epidemiology of parasites in an important pollinator. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210363.	2.6	11
17	Beneficial insects are associated with botanically rich margins with trees on small farms. Scientific Reports, 2021, 11, 15190.	3.3	13
18	Natural Pest Regulation and Its Compatibility with Other Crop Protection Practices in Smallholder Bean Farming Systems. Biology, 2021, 10, 805.	2.8	6

#	Article	IF	CITATIONS
19	Contrasting effects of the alkaloid ricinine on the capacity of Anopheles gambiae and Anopheles coluzzii to transmit Plasmodium falciparum. Parasites and Vectors, 2021, 14, 479.	2.5	11
20	Bumble bees show an induced preference for flowers when primed with caffeinated nectar and a target floral odor. Current Biology, 2021, 31, 4127-4131.e4.	3.9	25
21	Economic analysis of habitat manipulation in Brassica pest management: Wild plant species suppress cabbage webworm. Crop Protection, 2021, 150, 105788.	2.1	6
22	Qualitative Cost-Benefit Analysis of Using Pesticidal Plants in Smallholder Crop Protection. Agriculture (Switzerland), 2021, 11, 1007.	3.1	4
23	For antagonists and mutualists: the paradox of insect toxic secondary metabolites in nectar and pollen. Phytochemistry Reviews, 2020, 19, 603-614.	6.5	61
24	The climatic challenge: Which plants will people use in the next century?. Environmental and Experimental Botany, 2020, 170, 103872.	4.2	45
25	Knowledge gaps among smallholder farmers hinder adoption of conservation biological control. Biocontrol Science and Technology, 2020, 30, 256-277.	1.3	20
26	Herbivory and Time Since Flowering Shape Floral Rewards and Pollinator-Pathogen Interactions. Journal of Chemical Ecology, 2020, 46, 978-986.	1.8	7
27	The state of the world's urban ecosystems: What can we learn from trees, fungi, and bees?. Plants People Planet, 2020, 2, 482-498.	3.3	23
28	Information arms race explains plant-herbivore chemical communication in ecological communities. Science, 2020, 368, 1377-1381.	12.6	56
29	Age-related pharmacodynamics in a bumblebee-microsporidian system mirror similar patterns in vertebrates. Journal of Experimental Biology, 2020, 223, .	1.7	10
30	Opportunities and Scope for Botanical Extracts and Products for the Management of Fall Armyworm (Spodoptera frugiperda) for Smallholders in Africa. Plants, 2020, 9, 207.	3.5	28
31	Extracts of Common Pesticidal Plants Increase Plant Growth and Yield in Common Bean Plants. Plants, 2020, 9, 149.	3.5	18
32	Bioactivity of Common Pesticidal Plants on Fall Armyworm Larvae (Spodoptera frugiperda). Plants, 2020, 9, 112.	3.5	36
33	Additive Effect of Botanical Insecticide and Entomopathogenic Fungi on Pest Mortality and the Behavioral Response of Its Natural Enemy. Plants, 2020, 9, 173.	3.5	25
34	Assessing Chemical Mechanisms Underlying the Effects of Sunflower Pollen on a Gut Pathogen in Bumble Bees. Journal of Chemical Ecology, 2020, 46, 649-658.	1.8	23
35	Scope for non-crop plants to promote conservation biological control of crop pests and serve as sources of botanical insecticides. Scientific Reports, 2020, 10, 6951.	3.3	15
36	Insect pollination is important in a smallholder bean farming system. PeerJ, 2020, 8, e10102.	2.0	14

#	Article	IF	CITATIONS
37	Characterization of Hymenopteran Parasitoids of Aphis fabae in an African Smallholder Bean Farming System through Sequencing of COI â€~Mini-Barcodes'. Insects, 2019, 10, 331.	2.2	5
38	Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumblebee Parasite. Current Biology, 2019, 29, 3494-3500.e5.	3.9	61
39	Secondary metabolites from nectar and pollen: a resource for ecological and evolutionary studies. Ecology, 2019, 100, e02621.	3.2	40
40	From plant fungi to bee parasites: mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology, 2019, 100, e02801.	3.2	20
41	Mechanisms in mutualisms: a chemically mediated thrips pollination strategy in common elder. Planta, 2019, 250, 367-379.	3.2	14
42	A comparison of coffee floral traits under two different agricultural practices. Scientific Reports, 2019, 9, 7331.	3.3	17
43	Rosmarinic acid in <i>Canna generalis</i> activates the medial deterrent chemosensory neurone and deters feeding in the tobacco hornworm <i>Manduca sexta</i> . Physiological Entomology, 2019, 44, 140-147.	1.5	3
44	Floral Odors and the Interaction between Pollinating Ceratopogonid Midges and Cacao. Journal of Chemical Ecology, 2019, 45, 869-878.	1.8	13
45	Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. Journal of Rural Studies, 2019, 70, 75-86.	4.7	23
46	Field Margin Vegetation in Tropical African Bean Systems Harbours Diverse Natural Enemies for Biological Pest Control in Adjacent Crops. Sustainability, 2019, 11, 6399.	3.2	18
47	Phytochemical Analysis of Tephrosia vogelii across East Africa Reveals Three Chemotypes that Influence Its Use as a Pesticidal Plant. Plants, 2019, 8, 597.	3.5	14
48	Chemistry of floral rewards: intra―and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecological Monographs, 2019, 89, e01335.	5.4	137
49	Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: scientific evidence and knowledge gaps. PeerJ, 2019, 7, e8091.	2.0	30
50	Harnessing ecosystem services in transforming agriculture in Southern Africa. , 2019, , 143-151.		0
51	Harnessing ecosystem services in transforming agriculture in Southern Africa. , 2019, , 143-151.		Ο
52	The significance of climate in the pollinator dynamics of a tropical agroforestry system. Agriculture, Ecosystems and Environment, 2018, 254, 1-9.	5.3	15
53	Insecticidal activity of a native Australian tobacco, Nicotiana megalosiphon Van Heurck & Muell. Arg. (Solanales: Solanaceae) against key insect pests of brassicas. Crop Protection, 2018, 106, 6-12.	2.1	16
54	Novel Agmatine Derivatives in Maerua edulis With Bioactivity Against Callosobruchus maculatus, a Cosmopolitan Storage Insect Pest. Frontiers in Plant Science, 2018, 9, 1506.	3.6	6

#	Article	IF	CITATIONS
55	Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Frontiers in Plant Science, 2018, 9, 1425.	3.6	85
56	Crop Domestication Alters Floral Reward Chemistry With Potential Consequences for Pollinator Health. Frontiers in Plant Science, 2018, 9, 1357.	3.6	40
57	Effects of shortâ€ŧerm exposure to naturally occurring thymol concentrations on transmission of a bumble bee parasite. Ecological Entomology, 2018, 43, 567-577.	2.2	8
58	Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology, 2018, 99, 2535-2545.	3.2	68
59	Invasive weeds with pesticidal properties as potential new crops. Industrial Crops and Products, 2017, 110, 113-122.	5.2	43
60	The role of disease in bee foraging ecology. Current Opinion in Insect Science, 2017, 21, 60-67.	4.4	73
61	Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. Journal of Invertebrate Pathology, 2017, 148, 81-85.	3.2	32
62	Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (<i>Tilia tomentosa</i>). Biology Letters, 2017, 13, 20170484.	2.3	22
63	Insecticidal activity of Tithonia diversifolia and Vernonia amygdalina. Industrial Crops and Products, 2017, 110, 15-21.	5.2	25
64	Pesticidal plants in Africa: A global vision of new biological control products from local uses. Industrial Crops and Products, 2017, 110, 2-9.	5.2	132
65	Distasteful Nectar Deters Floral Robbery. Current Biology, 2017, 27, 2552-2558.e3.	3.9	55
66	The 2 nd International Conference on Pesticidal Plants (ICPP2). Industrial Crops and Products, 2017, 110, 1.	5.2	1
67	Identification of simple sequence repeat markers for sweetpotato weevil resistance. Euphytica, 2017, 213, 1.	1.2	9
68	Ageratum conyzoides L. for the management of pests and diseases by small holder farmers. Industrial Crops and Products, 2017, 110, 22-29.	5.2	17
69	Chemical variation and insecticidal activity of Lippia javanica (Burm. f.) Spreng essential oil against Sitophilus zeamais Motschulsky. Industrial Crops and Products, 2017, 110, 75-82.	5.2	46
70	Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Functional Ecology, 2017, 31, 65-75.	3.6	250
71	Segregation of Hydroxycinnamic Acid Esters Mediating Sweetpotato Weevil Resistance in Storage Roots of Sweetpotato. Frontiers in Plant Science, 2017, 8, 1011.	3.6	12
72	Plant toxin levels in nectar vary spatially across native and introduced populations. Journal of Ecology, 2016, 104, 1106-1115.	4.0	28

#	Article	IF	CITATIONS
73	Bumble bee parasite strains vary in resistance to phytochemicals. Scientific Reports, 2016, 6, 37087.	3.3	56
74	Leaf trichomes and foliar chemistry mediate defence against glasshouse thrips; Heliothrips haemorrhoidalis (Bouché) in Rhododendron simsii. Functional Plant Biology, 2016, 43, 1170.	2.1	16
75	Larval Performance and Adult Attraction ofDelia platura(Diptera: Anthomyiidae) in a Native and an Introduced Crop. Journal of Economic Entomology, 2016, 110, tow237.	1.8	6
76	In Memoriam Nigel C. Veitch, January 26th 1965–September 1st 2014. Phytochemistry, 2016, 122, 301-302.	2.9	0
77	Nectar chemistry modulates the impact of an invasive plant on native pollinators. Functional Ecology, 2016, 30, 885-893.	3.6	62
78	Messages from the Other Side: Parasites Receive Damage Cues from their Host Plants. Journal of Chemical Ecology, 2016, 42, 821-828.	1.8	1
79	Nor-hopanes from Zanha africana root bark with toxicity to bruchid beetles. Phytochemistry, 2016, 123, 25-32.	2.9	10
80	Pesticidal Plants in African Agriculture: Local Uses and Global Perspectives. Outlooks on Pest Management, 2016, 27, 226-230.	0.2	16
81	Shades of yellow: interactive effects of visual and odour cues in a pest beetle. PeerJ, 2016, 4, e2219.	2.0	11
82	Contact and fumigant toxicity of five pesticidal plants against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in stored cowpea (Vigna unguiculata). International Journal of Tropical Insect Science, 2015, 35, 172-184.	1.0	28
83	Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides. PLoS ONE, 2015, 10, e0143530.	2.5	70
84	Responses to colour and host odour cues in three cereal pest species, in the context of ecology and control. Bulletin of Entomological Research, 2015, 105, 417-425.	1.0	11
85	Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera). PLoS ONE, 2015, 10, e0133733.	2.5	31
86	Toxins induce â€ [~] malaise' behaviour in the honeybee (Apis mellifera). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 881-890.	1.6	59
87	The use of indigenous ecological resources for pest control in Africa. Food Security, 2014, 6, 71-86.	5.3	91
88	Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: making a case for plant-based pesticidal products. Food Security, 2014, 6, 369-384.	5.3	95
89	Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. Journal of Experimental Biology, 2014, 217, 1620-5.	1.7	68
90	Herbivore Defence Compounds Occur in Pollen and Reduce Bumblebee Colony Fitness. Journal of Chemical Ecology, 2014, 40, 878-881.	1.8	66

#	Article	IF	CITATIONS
91	Cost:benefit analysis of botanical insecticide use in cabbage: Implications for smallholder farmers in developing countries. Crop Protection, 2014, 57, 71-76.	2.1	87
92	Pesticidal Plants for Stored Product Pests on Small-holder Farms in Africa. , 2014, , 149-172.		5
93	The Only African Wild Tobacco, Nicotiana africana: Alkaloid Content and the Effect of Herbivory. PLoS ONE, 2014, 9, e102661.	2.5	13
94	Efficacy of Strychnos spinosa (Lam.) and Solanum incanum L. aqueous fruit extracts against cattle ticks. Tropical Animal Health and Production, 2013, 45, 1341-1347.	1.4	24
95	Caffeine in Floral Nectar Enhances a Pollinator's Memory of Reward. Science, 2013, 339, 1202-1204.	12.6	274
96	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 2013, 11, 251-259.	4.0	980
97	Resistance to the Weevils Cylas puncticollis and Cylas brunneus Conferred by Sweetpotato Root Surface Compounds. Journal of Agricultural and Food Chemistry, 2013, 61, 8141-8147.	5.2	32
98	Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests. PLoS ONE, 2013, 8, e78651.	2.5	68
99	Sweetpotato weevil (<i>Cylas</i> spp.) resistance in African sweetpotato germplasm. International Journal of Pest Management, 2012, 58, 73-81.	1.8	33
100	Highly Variable Insect Control Efficacy of <i>Tephrosia vogelii</i> Chemotypes. Journal of Agricultural and Food Chemistry, 2012, 60, 10055-10063.	5.2	84
101	Odour-Mediated Orientation of Beetles Is Influenced by Age, Sex and Morph. PLoS ONE, 2012, 7, e49071.	2.5	12
102	Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment. Phytochemistry, 2012, 78, 135-146.	2.9	84
103	Acaricidal efficacy against cattle ticks and acute oral toxicity of Lippia javanica (Burm F.) Spreng. Tropical Animal Health and Production, 2011, 43, 481-489.	1.4	71
104	Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor. Plant Cell Reports, 2011, 30, 1163-1172.	5.6	64
105	Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis. Arthropod-Plant Interactions, 2011, 5, 219-225.	1.1	18
106	Inactivation of Baculovirus by Isoflavonoids on Chickpea (Cicer arietinum) Leaf Surfaces Reduces the Efficacy of Nucleopolyhedrovirus Against Helicoverpa armigera. Journal of Chemical Ecology, 2010, 36, 227-235.	1.8	25
107	Highly glycosylated flavonoids from the pods of Bobgunnia madagascariensis. Tetrahedron Letters, 2010, 51, 4727-4730.	1.4	22
108	Farmers' insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa. International Journal of Pest Management, 2010, 57, 41-49.	1.8	71

#	Article	IF	CITATIONS
109	Chemical basis for resistance in sweetpotato Ipomoea batatas to the sweetpotato weevil Cylas puncticollis. Pure and Applied Chemistry, 2009, 81, 141-151.	1.9	54
110	Antibacterial and antifungal activity of cicerfuran and related 2-arylbenzofurans and stilbenes. Microbiological Research, 2009, 164, 191-195.	5.3	148
111	Triterpenoid saponins from a cytotoxic root extract of Sideroxylon foetidissimum subsp. gaumeri. Phytochemistry, 2009, 70, 765-772.	2.9	18
112	Bisdesmosidic Saponins from <i>Securidaca longepedunculata</i> Roots: Evaluation of Deterrency and Toxicity to Coleopteran Storage Pests. Journal of Agricultural and Food Chemistry, 2009, 57, 8860-8867.	5.2	42
113	Uses and Consumption. , 2007, , 33-46.		15
114	Polyoxygenated cyclohexane derivatives and other constituents from Kaempferia rotunda L Phytochemistry, 2007, 68, 1579-1586.	2.9	31
115	Comparative study of field and laboratory evaluations of the ethnobotanical Cassia sophera L. (Leguminosae) for bioactivity against the storage pests Callosobruchus maculatus (F.) (Coleoptera:) Tj ETQq1 1 Research. 2007. 43. 79-86.	0.784314 2.6	rgBT /Over o
116	Insect Pests of Lentil and Their Management. , 2007, , 331-348.		8
117	Host plant resistance and insect pest management in chickpea , 2007, , 520-537.		33
118	Susceptibility of pigeonpea and some of its wild relatives to predation by Helicoverpa armigera: implications for breeding resistant cultivars. Australian Journal of Agricultural Research, 2006, 57, 831.	1.5	14
119	Synthesis of cicerfuran, an antifungal benzofuran, and some related analogues. Tetrahedron, 2006, 62, 4214-4226.	1.9	178
120	The Effect of Cicerfuran, an Arylbenzofuran fromCicer bijugum, and Related Benzofurans and Stilbenes onLeishmania aethiopica,L.tropicaandL.major. Planta Medica, 2006, 72, 907-911.	1.3	14
121	Hostâ€Plant Viral Infection Effects on Arthropodâ€Vector Population Growth, Development and Behaviour: Management and Epidemiological Implications. Advances in Virus Research, 2006, 67, 419-452.	2.1	133
122	The Chemistry of The Genus Cicer L Studies in Natural Products Chemistry, 2006, 33, 905-956.	1.8	11
123	Reviving Chickpea Production in Nepal Through Integrated Crop Management, with Emphasis on Botrytis Gray Mold. Plant Disease, 2005, 89, 1252-1262.	1.4	24
124	Effect of Volatile Constituents from Securidaca Longepedunculata on Insect pests Of Stored Grain. Journal of Chemical Ecology, 2005, 31, 303-313.	1.8	61
125	Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. Journal of Chemical Ecology, 2003, 29, 811-821.	1.8	97
126	Insect antifeedant furanocoumarins from Tetradium daniellii. Phytochemistry, 2003, 63, 41-46.	2.9	67

#	Article	IF	CITATIONS
127	The effect of cicerfuran, related arylbenzofuransand stilbenes on Leishmania aethiopica, L. tropica, and L. major promastigotes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003, 97, 627.	1.8	2
128	The feeding behavior of the weevil,Exophthalmus jekelianus, with respect to the nutrients and allelochemicals in host plant leaves. Oikos, 2003, 100, 172-184.	2.7	32
129	kathmandu High-risk medical care in war-torn Nepal. Lancet, The, 2002, 359, 1495.	13.7	7
130	Why the World Summit should look to the mountains. Lancet, The, 2002, 360, 626.	13.7	1
131	Identification of methyl salicylate as the principal volatile component in the methanol extract of root bark ofSecuridaca longepedunculata Fers. Journal of Mass Spectrometry, 2002, 37, 577-580.	1.6	35
132	Wound healing activity of acylated iridoid glycosides fromScrophularia nodosa. Phytotherapy Research, 2002, 16, 33-35.	5.8	110
133	Can larvae of the pod-borer, <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea <i>Cajanus</i> sp. (Fabaceae)?. Bulletin of Entomological Research, 2002, 92, 45-51.	1.0	40
134	The torturous road to democracy—domestic crisis in Nepal. Lancet, The, 2001, 358, 752-756.	13.7	12
135	Ethnobotanicals in Ghana: reviving and modernising age-old farmer practice. Outlooks on Pest Management, 2001, 12, 233-238.	0.2	41
136	Insect Antifeedant Activity of Three New Tetranortriterpenoids fromTrichiliapallida. Journal of Natural Products, 2001, 64, 1117-1120.	3.0	35
137	Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. , 2001, 27, 965-977.		96
138	kathmandu Nepal calls the shots in hepatitis E virus vaccine trial. Lancet, The, 2000, 355, 1623.	13.7	23
139	Maackiain in Cicer bijugum Rech. f. associated with resistance to Botrytis grey mould. Biochemical Systematics and Ecology, 1999, 27, 761-767.	1.3	35
140	Pharmaceutical companies target plant products for drugs of the future. Lancet, The, 1999, 354, 490.	13.7	1
141	accra Vision is failing for river-blindness control in Ghana. Lancet, The, 1999, 354, 2143.	13.7	8
142	mwanza Prevention better than cure?. Lancet, The, 1999, 353, 217.	13.7	0
143	Four New Tetranortriterpenoids fromCedrela odorataAssociated with Leaf Rejection byExopthalmus jekelianus. Journal of Natural Products, 1999, 62, 1260-1263.	3.0	31
144	The distribution of isoflavonoids in cicer. Phytochemistry, 1998, 48, 995-1001.	2.9	21

#	Article	IF	CITATIONS
145	A 2-arylbenzofuran from roots of cicer bijugum associated with fusarium wilt resistance. Phytochemistry, 1998, 48, 947-951.	2.9	41
146	tashkent Uzbek health care—no longer back in the USSR. Lancet, The, 1998, 351, 1867.	13.7	1
147	batticaloa War surgery continues in Sri Lanka. Lancet, The, 1998, 351, 1039.	13.7	1
148	Phytoalexin accumulation in the roots of chickpea (Cicer arietinumL.) seedlings associated with resistance to fusarium wilt (Fusarium oxysporumf.sp.ciceri). Physiological and Molecular Plant Pathology, 1997, 50, 167-178.	2.5	52
149	2-Methoxyjudaicin, an isoflavene from the roots of Cicer bijugum. Phytochemistry, 1997, 44, 1587-1589.	2.9	16
150	Pipecolic acid methyl esters as artefacts from the ion-exchange chromatography of Inga punctata foliar extracts. Journal of Chromatography A, 1997, 766, 267-269.	3.7	5
151	Isoflavenes from the roots of Cicer judaicum. Phytochemistry, 1996, 43, 695-700.	2.9	34
152	Toxicity following accidental ingestion of Aconitum containing Chinese remedy. Human and Experimental Toxicology, 1996, 15, 839-842.	2.2	44
153	Root exudates associated with the resistance of four chickpea cultivars (Cicer arietinum) to two races of Fusarium oxysporum f.sp. ciceri. Plant Pathology, 1995, 44, 686-694.	2.4	42
154	Developmental inhibition ofSpodoptera litura (Fab.) larvae by a novel caffeoylquinic acid from the wild groundnut,Arachis paraguariensis (Chod et Hassl.). Journal of Chemical Ecology, 1993, 19, 2917-2933.	1.8	88
155	The identification and characterization of resistance in wild species of Arachis to Spodoptera litura (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 1993, 83, 421-429.	1.0	34