Annelise E Barron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2747071/publications.pdf

Version: 2024-02-01

41323 45285 9,071 151 49 90 citations h-index g-index papers 155 155 155 8034 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-Assembly of Antimicrobial Peptoids Impacts Their Biological Effects on <i>ESKAPE</i> Bacterial Pathogens. ACS Infectious Diseases, 2022, 8, 533-545.	1.8	35
2	Efficacy of Cathelicidin-Mimetic Antimicrobial Peptoids against Staphylococcus aureus. Microbiology Spectrum, 2022, 10, e0053422.	1.2	8
3	Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nature Communications, 2022, 13, 2766.	5.8	20
4	Potent Antiviral Activity against HSV-1 and SARS-CoV-2 by Antimicrobial Peptoids. Pharmaceuticals, 2021, 14, 304.	1.7	28
5	Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 1311-1339.	1.0	13
6	Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer's disease. Immunity and Ageing, 2021, 18, 29.	1.8	35
7	Halogenation as a tool to tune antimicrobial activity of peptoids. Scientific Reports, 2020, 10, 14805.	1.6	60
8	Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs, 2020, 34, 673-695.	2.7	19
9	Optimizing Exogenous Surfactant as a Pulmonary Delivery Vehicle for Chicken Cathelicidin-2. Scientific Reports, 2020, 10, 9392.	1.6	5
10	Das humane Wirtsabwehrpeptid Cathelicidin LLâ€37 ist ein nanomolarer Inhibitor der amyloiden Selbstassoziation von Inselamyloidâ€Polypeptid (IAPP). Angewandte Chemie, 2020, 132, 12937-12941.	1.6	2
11	The Human Hostâ€Defense Peptide Cathelicidin LLâ€37 is a Nanomolar Inhibitor of Amyloid Selfâ€Assembly of Islet Amyloid Polypeptide (IAPP). Angewandte Chemie - International Edition, 2020, 59, 12837-12841.	7.2	34
12	Helical side chain chemistry of a peptoidâ€based SPâ€C analogue: Balancing structural rigidity and biomimicry. Biopolymers, 2019, 110, e23277.	1.2	6
13	Effective in vivo treatment of acute lung injury with helical, amphipathic peptoid mimics of pulmonary surfactant proteins. Scientific Reports, 2018, 8, 6795.	1.6	27
14	Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 170-173.	1.0	41
15	Evidence that the Human Innate Immune Peptide LL-37 May Be a Binding Partner of Abeta and Inhibitor of Fibril Assembly. Biophysical Journal, 2018, 114, 393a.	0.2	2
16	Role of Microbes in the Development of Alzheimer's Disease: State of the Art – An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Frontiers in Genetics, 2018, 9, 362.	1.1	91
17	Periprosthetic bacterial biofilm and quorum sensing. Journal of Orthopaedic Research, 2018, 36, 2331-2339.	1.2	43
18	Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids. Scientific Reports, 2017, 7, 16718.	1.6	45

#	Article	IF	CITATIONS
19	Evidence that the Human Innate Immune Peptide LL-37 may be a Binding Partner of Amyloid- \hat{l}^2 and Inhibitor of Fibril Assembly. Journal of Alzheimer's Disease, 2017, 59, 1213-1226.	1.2	44
20	In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents. PLoS ONE, 2016, 11, e0135961.	1.1	78
21	Human antimicrobial peptide LL-37 induces glial-mediated neuroinflammation. Biochemical Pharmacology, 2015, 94, 130-141.	2.0	54
22	Prostate tumor specific peptide–peptoid hybrid prodrugs. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2849-2852.	1.0	17
23	No Evidence of Pathogenic Involvement of Cathelicidins in Patient Cohorts and Mouse Models of Lupus and Arthritis. PLoS ONE, 2014, 9, e115474.	1.1	45
24	Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids, 2014, 46, 2561-2571.	1.2	60
25	A tunable silk–alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials, 2014, 35, 3736-3743.	5.7	80
26	Learning from Host-Defense Peptides: Cationic, Amphipathic Peptoids with Potent Anticancer Activity. PLoS ONE, 2014, 9, e90397.	1.1	60
27	Protein polymer hydrogels: Effects of endotoxin on biocompatibility. Journal of Biomaterials Applications, 2013, 28, 395-406.	1.2	11
28	Simultaneous detection of 19 <scp>K</scp> <i>â€ras</i> mutations by freeâ€solution conjugate electrophoresis of ligase detection reaction products on glass microchips. Electrophoresis, 2013, 34, 590-597.	1.3	14
29	A Readily Applicable Strategy to Convert Peptides to Peptoid-based Therapeutics. PLoS ONE, 2013, 8, e58874.	1.1	17
30	Alginate-PEG Sponge Architecture and Role in the Design of Insulin Release Dressings. Biomacromolecules, 2012, 13, 1478-1485.	2.6	45
31	1072 INHIBITION OF BLADDER CANCER CELL GROWTH BY TREATMENT WITH SYNTHETICALLY DERIVED ANTI-CANCER PEPTOIDS. Journal of Urology, 2012, 187, .	0.2	2
32	Peptoid transporters: effects of cationic, amphipathic structure on their cellular uptake. Molecular BioSystems, 2012, 8, 2626.	2.9	21
33	<i>In Vivo</i> Biodistribution and Small Animal PET of ⁶⁴ Cu-Labeled Antimicrobial Peptoids. Bioconjugate Chemistry, 2012, 23, 1069-1079.	1.8	51
34	A Four-Arm Star-Shaped Poly(ethylene glycol) (StarPEG) Platform for Bombesin Peptide Delivery to Gastrin-Releasing Peptide Receptors in Prostate Cancer. ACS Macro Letters, 2012, 1, 753-757.	2.3	8
35	Synthesis and Assembly of Functional High Molecular Weight Adiponectin Multimers in an Engineered Strain of Escherichia coli. Biomacromolecules, 2012, 13, 1035-1042.	2.6	4
36	Monodisperse, "Highly―Positively Charged Protein Polymer Drag-Tags Generated in an Intein-Mediated Purification System Used in Free-Solution Electrophoretic Separations of DNA. Biomacromolecules, 2012, 13, 117-123.	2.6	2

#	Article	IF	Citations
37	Microfabricated devices for biomolecule encapsulation. Electrophoresis, 2012, 33, 2639-2649.	1.3	17
38	Divergent dispersion behavior of ss <scp>DNA</scp> fragments during microchip electrophoresis in p <scp>DMA</scp> and <scp>LPA</scp> entangled polymer networks. Electrophoresis, 2012, 33, 1411-1420.	1.3	7
39	Encapsulation of protein microfiber networks supporting pancreatic islets. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3384-3391.	2.1	8
40	Visualizing and quantifying cell phenotype using soft Xâ€ray tomography. BioEssays, 2012, 34, 320-327.	1.2	49
41	Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials, 2012, 33, 6691-6697.	5.7	154
42	Quantitative experimental determination of primer–dimer formation risk by freeâ€solution conjugate electrophoresis. Electrophoresis, 2012, 33, 483-491.	1.3	7
43	Completely Monodisperse, Highly Repetitive Proteins for Bioconjugate Capillary Electrophoresis: Development and Characterization. Biomacromolecules, 2011, 12, 2275-2284.	2.6	9
44	Purification of HIV RNA from Serum Using a Polymer Capture Matrix in a Microfluidic Device. Analytical Chemistry, 2011, 83, 982-988.	3.2	27
45	A 265-Base DNA Sequencing Read by Capillary Electrophoresis with No Separation Matrix. Analytical Chemistry, 2011, 83, 509-515.	3.2	26
46	Tunable, Post-translational Hydroxylation of Collagen Domains in <i>Escherichia coli</i> Chemical Biology, 2011, 6, 320-324.	1.6	47
47	Biomimetic N-Terminal Alkylation of Peptoid Analogues of Surfactant Protein C. Biophysical Journal, 2011, 101, 1076-1085.	0.2	21
48	Blinded study determination of high sensitivity and specificity microchip electrophoresisâ€SSCP/HA to detect mutations in the p53 gene. Electrophoresis, 2011, 32, 2921-2929.	1.3	7
49	Gene libraries open up. Nature Materials, 2011, 10, 83-84.	13.3	1
50	Landscape of Next-Generation Sequencing Technologies. Analytical Chemistry, 2011, 83, 4327-4341.	3.2	314
51	Functional Synergy between Antimicrobial Peptoids and Peptides against Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2011, 55, 5399-5402.	1.4	36
52	Protein polymer MRI contrast agents: Longitudinal analysis of biomaterials in vivo. Magnetic Resonance in Medicine, 2011, 65, 220-228.	1.9	25
53	Freeâ€solution electrophoretic separations of DNA–dragâ€tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength. Electrophoresis, 2011, 32, 1201-1208.	1.3	6
54	Ultrafast, efficient separations of largeâ€sized dsDNA in a blended polymer matrix by microfluidic chip electrophoresis: A design of experiments approach. Electrophoresis, 2011, 32, 3233-3240.	1.3	13

#	Article	IF	CITATIONS
55	NMEGylation: A novel modification to enhance the bioavailability of therapeutic peptides. Biopolymers, 2011, 96, 688-693.	1.2	12
56	Commentary progress in the <i>de novo</i> design of structured peptoid protein mimics. Biopolymers, 2011, 96, 556-560.	1.2	12
57	A chemically synthesized peptoidâ€based dragâ€tag enhances freeâ€solution DNA sequencing by capillary electrophoresis. Biopolymers, 2011, 96, 702-707.	1.2	9
58	A fluorescence polarization assay using an engineered human respiratory syncytial virus F protein as a direct screening platform. Analytical Biochemistry, 2011, 409, 195-201.	1.1	14
59	Non-ionic, thermo-responsive DEA/DMA nanogels: Synthesis, characterization, and use for DNA separations by microchip electrophoresis. Journal of Colloid and Interface Science, 2011, 357, 345-353.	5.0	22
60	Peptoids: Bio-Inspired Polymers as Potential Pharmaceuticals. Current Pharmaceutical Design, 2011, 17, 2732-2747.	0.9	73
61	Efficacy of Antimicrobial Peptoids against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 3058-3062.	1.4	93
62	Short Alkylated Peptoid Mimics of Antimicrobial Lipopeptides. Antimicrobial Agents and Chemotherapy, 2011, 55, 417-420.	1.4	108
63	Antimicrobial Peptoids Are Effective against Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2011, 55, 3054-3057.	1.4	115
64	Biophysical Mechanisms of Host Defense Peptide (HDP) Toxicity as Revealed by a Study of Peptoid Mimics of HDPs. FASEB Journal, 2011, 25, 206.2.	0.2	1
65	Comparing Bacterial Membrane Interactions of Antimicrobial Peptides and Their Mimics. Methods in Molecular Biology, 2010, 618, 171-182.	0.4	34
66	Sustained prolonged topical delivery of bioactive human insulin for potential treatment of cutaneous wounds. International Journal of Pharmaceutics, 2010, 398, 146-154.	2.6	47
67	Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation. Biomaterials, 2010, 31, 7288-7297.	5.7	92
68	Surface Rheological and Morphological Studies of Peptoid Mimics of Lung Surfactant Protein C. Biophysical Journal, 2010, 98, 89a-90a.	0.2	0
69	Novel Peptoid Building Blocks: Synthesis of Functionalized Aromatic Helix-Inducing Submonomers. Organic Letters, 2010, 12, 492-495.	2.4	48
70	Biophysical Mimicry of Lung Surfactant Protein B by Random Nylon-3 Copolymers. Journal of the American Chemical Society, 2010, 132, 7957-7967.	6.6	32
71	Mimicking SP-C palmitoylation on a peptoid-based SP-B analogue markedly improves surface activity. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1663-1678.	1.4	19
72	Multivalent Protein Polymer MRI Contrast Agents: Controlling Relaxivity via Modulation of Amino Acid Sequence. Biomacromolecules, 2010, 11, 1429-1436.	2.6	36

#	Article	IF	Citations
73	Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19375-19380.	3.3	137
74	Sizeâ€based protein separations by microchip electrophoresis using an acidâ€labile surfactant as a replacement for SDS. Electrophoresis, 2009, 30, 2117-2122.	1.3	15
75	DNA migration mechanism analyses for applications in capillary and microchip electrophoresis. Electrophoresis, 2009, 30, 2014-2024.	1.3	16
76	Close mimicry of lung surfactant protein B by "clicked―dimers of helical, cationic peptoids. Biopolymers, 2009, 92, 538-553.	1.2	26
77	Self-assembling peptide–lipoplexes for substrate-mediated gene delivery. Acta Biomaterialia, 2009, 5, 903-912.	4.1	40
78	Synthesis and Characterization of a New Class of Cationic Protein Polymers for Multivalent Display and Biomaterial Applications. Biomacromolecules, 2009, 10, 1125-1134.	2.6	31
79	Engineering Surfaces for Substrate-Mediated Gene Delivery Using Recombinant Proteins. Biomacromolecules, 2009, 10, 2779-2786.	2.6	22
80	Experimental and theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids. Biointerphases, 2009, 4, FA22-FA32.	0.6	49
81	Chemoselective and Microwave-Assisted Synthesis of Glycopeptoids. Organic Letters, 2009, 11, 5210-5213.	2.4	48
82	Surface Behaviour of Peptoid Mimics of Pulmonary Surfactant Protein SP-C: Captive Bubble Surfactometry. Biophysical Journal, 2009, 96, 352a.	0.2	1
83	Peptide-mediated lipofection is governed by lipoplex physical properties and the density of surface-displayed amines. Journal of Pharmaceutical Sciences, 2008, 97, 4794-4806.	1.6	15
84	Ligase detection reaction for the analysis of point mutations using freeâ€solution conjugate electrophoresis in a polymer microfluidic device. Electrophoresis, 2008, 29, 4751-4760.	1.3	24
85	Polymer systems designed specifically for DNA sequencing by microchip electrophoresis: A comparison with commercially available materials. Electrophoresis, 2008, 29, 4652-4662.	1.3	18
86	Hydrophobically modified polyacrylamide block copolymers for fast, highâ€resolution DNA sequencing in microfluidic chips. Electrophoresis, 2008, 29, 4669-4676.	1.3	13
87	ThermoresponsiveN-alkoxyalkylacrylamide polymers as a sieving matrix for high-resolution DNA separations on a microfluidic chip. Electrophoresis, 2008, 29, 4677-4683.	1.3	6
88	DNA sequencing by microchip electrophoresis using mixtures of high―and lowâ€molar mass poly(<i>N,N</i> â€dimethylacrylamide) matrices. Electrophoresis, 2008, 29, 4663-4668.	1.3	11
89	Advantages and limitations of nextâ€generation sequencing technologies: A comparison of electrophoresis and nonâ€electrophoresis methods. Electrophoresis, 2008, 29, 4618-4626.	1.3	132
90	Protein and peptide biomimicry: Goldâ€mining inspiration from Nature's ingenuity. AICHE Journal, 2008, 54, 2-8.	1.8	30

#	Article	IF	CITATIONS
91	Biomimicry of Surfactant Protein C. Accounts of Chemical Research, 2008, 41, 1409-1417.	7.6	34
92	Sequencing of DNA by Free-Solution Capillary Electrophoresis Using a Genetically Engineered Protein Polymer Drag-Tag. Analytical Chemistry, 2008, 80, 2842-2848.	3.2	33
93	Effects of Hydrophobic Helix Length and Side Chain Chemistry on Biomimicry in Peptoid Analogues of SP-C. Biochemistry, 2008, 47, 1808-1818.	1.2	46
94	Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2794-2799.	3.3	558
95	Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 476-481.	3.3	64
96	Surface-immobilised antimicrobial peptoids. Biofouling, 2008, 24, 439-448.	0.8	97
97	Multiplexed p53 Mutation Detection by Free-Solution Conjugate Microchannel Electrophoresis with Polyamide Drag-Tags. Analytical Chemistry, 2007, 79, 1848-1854.	3.2	27
98	Stochastic Single-Molecule Videomicroscopy Methods To Measure Electrophoretic DNA Migration Modalities in Polymer Solutions above and below Entanglement. Analytical Chemistry, 2007, 79, 7740-7747.	3.2	15
99	Lipid composition greatly affects the in vitro surface activity of lung surfactant protein mimics. Colloids and Surfaces B: Biointerfaces, 2007, 57, 37-55.	2.5	21
100	An optimized microchip electrophoresis system for mutation detection by tandem SSCP and heteroduplex analysis for p53â€gene exonsâ€5–9. Electrophoresis, 2006, 27, 3823-3835.	1.3	25
101	A Threaded Loop Conformation Adopted by a Family of Peptoid Nonamers. Journal of the American Chemical Society, 2006, 128, 1733-1738.	6.6	124
102	Effects of Including an N-Terminal Insertion Region and Arginine-Mimetic Side Chains in Helical Peptoid Analogues of Lung Surfactant Protein Bâ€. Biochemistry, 2006, 45, 11809-11818.	1.2	40
103	Self-Associating Block Copolymer Networks for Microchip Electrophoresis Provide Enhanced DNA Separation via "Inchworm―Chain Dynamics. Analytical Chemistry, 2006, 78, 4409-4415.	3.2	22
104	Free-solution electrophoresis of DNA modified with drag-tags at both ends. Electrophoresis, 2006, 27, 1702-1712.	1.3	26
105	What is the future of electrophoresis in large-scale genomic sequencing?. Electrophoresis, 2006, 27, 3689-3702.	1.3	35
106	The potential of electrophoretic mobility shift assays for clinical mutation detection. Electrophoresis, 2006, 27, 3805-3815.	1.3	44
107	Versatile Oligo(N-Substituted) Glycines: The Many Roles of Peptoids in Drug Discovery. , 2005, , 1-31.		29
108	Simple, Helical Peptoid Analogs of Lung Surfactant Protein B. Chemistry and Biology, 2005, 12, 77-88.	6.2	74

#	Article	IF	Citations
109	Protein polymer drag-tags for DNA separations by end-labeled free-solution electrophoresis. Electrophoresis, 2005, 26, 2138-2148.	1.3	30
110	End-labeled free-solution electrophoresis of DNA. Electrophoresis, 2005, 26, 331-350.	1.3	104
111	Optical monitoring of bubble size and shape in a pulsating bubble surfactometer. Journal of Applied Physiology, 2005, 99, 624-633.	1.2	19
112	Comblike, Monodisperse Polypeptoid Drag-Tags for DNA Separations by End-Labeled Free-Solution Electrophoresis (ELFSE). Bioconjugate Chemistry, 2005, 16, 929-938.	1.8	46
113	Poly(acrylamide-co-alkylacrylamides) for Electrophoretic DNA Purification in Microchannels. Analytical Chemistry, 2005, 77, 772-779.	3.2	51
114	New Peptidomimetic Polymers for Antifouling Surfaces. Journal of the American Chemical Society, 2005, 127, 7972-7973.	6.6	402
115	DNA sequencing and genotyping in miniaturized electrophoresis systems. Electrophoresis, 2004, 25, 3564-3588.	1.3	108
116	Sparsely Cross-Linked "Nanogel―Matrixes as Fluid, Mechanically Stabilized Polymer Networks for High-Throughput Microchannel DNA Sequencing. Analytical Chemistry, 2004, 76, 5249-5256.	3.2	42
117	Characterization of Glutamine Deamidation in a Long, Repetitive Protein Polymer via Bioconjugate Capillary Electrophoresis. Biomacromolecules, 2004, 5, 618-627.	2.6	17
118	A novel thermogelling matrix for microchannel DNA sequencing based on poly-N-alkoxyalkylacrylamide copolymers. Electrophoresis, 2003, 24, 4161-4169.	1.3	18
119	Sparsely cross-linked"nanogels―for microchannel DNA sequencing. Electrophoresis, 2003, 24, 4170-4180.	1.3	28
120	Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis, 2003, 24, 34-54.	1.3	264
121	Poly-N-hydroxyethylacrylamide as a novel, adsorbed coating for protein separation by capillary electrophoresis. Electrophoresis, 2003, 24, 1166-1175.	1.3	91
122	Helical Peptoid Mimics of Lung Surfactant Protein C. Chemistry and Biology, 2003, 10, 1057-1063.	6.2	76
123	Helical Peptoid Mimics of Magainin-2 Amide. Journal of the American Chemical Society, 2003, 125, 12092-12093.	6.6	342
124	Structural and Spectroscopic Studies of Peptoid Oligomers with \hat{l}_{\pm} -Chiral Aliphatic Side Chains. Journal of the American Chemical Society, 2003, 125, 13525-13530.	6.6	279
125	High-Throughput, High-Sensitivity Genetic Mutation Detection by Tandem Single-Strand Conformation Polymorphism/Heteroduplex Analysis Capillary Array Electrophoresis. Analytical Chemistry, 2002, 74, 2565-2572.	3.2	63
126	Profiling Solid-Phase Synthesis Products by Free-Solution Conjugate Capillary Electrophoresis. Bioconjugate Chemistry, 2002, 13, 663-670.	1.8	25

#	Article	IF	CITATIONS
127	Multiplexed, High-Throughput Genotyping by Single-Base Extension and End-Labeled Free-Solution Electrophoresis. Analytical Chemistry, 2002, 74, 4328-4333.	3.2	88
128	A New Cloning Method for the Preparation of Long Repetitive Polypeptides without a Sequence Requirement. Macromolecules, 2002, 35, 8281-8287.	2.2	50
129	Optimized Sample Preparation for Tandem Capillary Electrophoresis Single-Stranded Conformational Polymorphism/Heteroduplex Analysis. BioTechniques, 2002, 33, 318-325.	0.8	17
130	Technical challenges in applying capillary electrophoresis-single strand conformation polymorphism for routine genetic analysis. Electrophoresis, 2002, 23, 1375.	1.3	56
131	Poly-N-hydroxyethylacrylamide (polyDuramideâ,,¢): A novel, hydrophilic, self-coating polymer matrix for DNA sequencing by capillary electrophoresis. Electrophoresis, 2002, 23, 1429.	1.3	72
132	Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA. Electrophoresis, 2002, 23, 2766-2776.	1.3	85
133	Extreme stability of helices formed by water-soluble poly-N-substituted glycines (polypeptoids) with ?-chiral side chains. Biopolymers, 2002, 63, 12-20.	1.2	144
134	Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Current Opinion in Chemical Biology, 2002, 6, 872-877.	2.8	246
135	Peptoid Oligomers with α-Chiral, Aromatic Side Chains:  Sequence Requirements for the Formation of Stable Peptoid Helices. Journal of the American Chemical Society, 2001, 123, 6778-6784.	6.6	229
136	Microchannel DNA Sequencing Matrices with a Thermally Controlled "Viscosity Switch― Analytical Chemistry, 2001, 73, 157-164.	3.2	111
137	Peptoid Oligomers with α-Chiral, Aromatic Side Chains: Effects of Chain Length on Secondary Structure. Journal of the American Chemical Society, 2001, 123, 2958-2963.	6.6	189
138	Molar Mass Profiling of Synthetic Polymers by Free-Solution Capillary Electrophoresis of DNAâ^'Polymer Conjugates. Analytical Chemistry, 2001, 73, 1795-1803.	3.2	59
139	Impact of polymer hydrophobicity on the properties and performance of DNA sequencing matrices for capillary electrophoresis. Electrophoresis, 2001, 22, 737-747.	1.3	69
140	The use of light scattering for precise characterization of polymers for DNA sequencing by capillary electrophoresis. Electrophoresis, 2001, 22, 4118-4128.	1.3	24
141	Capillary electrophoresis of DNA in uncrosslinked polymer solutions: Evidence for a new mechanism of DNA separation., 2000, 52, 259-270.		22
142	Polymeric matrices for DNA sequencing by capillary electrophoresis. Electrophoresis, 2000, 21, 4096-4111.	1.3	119
143	DNA Sequencing up to 1300 Bases in Two Hours by Capillary Electrophoresis with Mixed Replaceable Linear Polyacrylamide Solutions. Analytical Chemistry, 2000, 72, 1045-1052.	3.2	144
144	Capillary Electrophoretic Separation of DNA Restriction Fragments in Mixtures of Low- and High-Molecular-Weight Hydroxyethylcellulose. Industrial & Engineering Chemistry Research, 1996, 35, 2900-2908.	1.8	30

#	Article	IF	CITATIONS
145	The effects of polymer properties on DNA separations by capillary electrophoresis in uncross-linked polymer solutions. Electrophoresis, 1996, 17, 744-757.	1.3	125
146	The use of coated and uncoated capillaries for the electrophoretic separation of DNA in dilute polymer solutions. Electrophoresis, 1995, 16, 64-74.	1.3	80
147	DNA Separations by Slab Gel, and Capillary Electrophoresis: Theory and Practice. Separation and Purification Reviews, 1995, 24, 1-118.	0.8	50
148	A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultradilute polymer solutions. Electrophoresis, 1994, 15, 597-615.	1.3	212
149	Capillary electrophoresis of DNA in uncross-linked polymer solutions. Journal of Chromatography A, 1993, 652, 3-16.	1.8	220
150	Microchip-Based Sanger Sequencing of DNA., 0,, 153-163.		1
151	Potent antiviral activity against HSV-1 and SARS-CoV-2 by antimicrobial peptoids. , 0, , .		0