
Timothée Poisot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2746991/publications.pdf Version: 2024-02-01

TIMOTHÃOF POISOT

#	Article	IF	CITATIONS
1	The Global Virome in One Network (VIRION): an Atlas of Vertebrate-Virus Associations. MBio, 2022, 13, e0298521.	4.1	23
2	Evaluating ecological uniqueness over broad spatial extents using species distribution modelling. Oikos, 2022, 2022, .	2.7	12
3	Food web reconstruction through phylogenetic transfer of lowâ€rank network representation. Methods in Ecology and Evolution, 2022, 13, 2838-2849.	5.2	4
4	SimpleSDMLayers.jl and GBIF.jl: A Framework for Species Distribution Modeling in Julia. Journal of Open Source Software, 2021, 6, 2872.	4.6	6
5	Environment–host–microbial interactions shape the <i>Sarraceniapurpurea</i> microbiome at the continental scale. Ecology, 2021, 102, e03308.	3.2	10
6	Beta and phylogenetic diversities tell complementary stories about ecological networks biogeography. Parasitology, 2021, 148, 835-842.	1.5	2
7	Optimal transportation theory for species interaction networks. Ecology and Evolution, 2021, 11, 3841-3855.	1.9	3
8	Global knowledge gaps in species interaction networks data. Journal of Biogeography, 2021, 48, 1552-1563.	3.0	38
9	Mangal.jl and EcologicalNetworks.jl: Two complementary packages for analyzing ecological networks in Julia. Journal of Open Source Software, 2021, 6, 2721.	4.6	3
10	SVD Entropy Reveals the High Complexity of Ecological Networks. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	16
11	Data Proliferation, Reconciliation, and Synthesis in Viral Ecology. BioScience, 2021, 71, 1148-1156.	4.9	15
12	Refocusing multiple stressor research around the targets and scales of ecological impacts. Nature Ecology and Evolution, 2021, 5, 1478-1489.	7.8	59
13	A roadmap towards predicting species interaction networks (across space and time). Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20210063.	4.0	33
14	Sampling and asymptotic network properties of spatial multiâ€ŧrophic networks. Oikos, 2021, 130, 2250-2259.	2.7	5
15	The science of the host–virus network. Nature Microbiology, 2021, 6, 1483-1492.	13.3	59
16	Key Questions for Next-Generation Biomonitoring. Frontiers in Environmental Science, 2020, 7, .	3.3	68
17	Revisiting the Links-Species Scaling Relationship in Food Webs. Patterns, 2020, 1, 100079.	5.9	9
18	Analysing ecological networks of species interactions. Biological Reviews, 2019, 94, 16-36.	10.4	347

2

#	Article	IF	CITATIONS
19	The marine fish food web is globally connected. Nature Ecology and Evolution, 2019, 3, 1153-1161.	7.8	76
20	Testing predictability of disease outbreaks with a simple model of pathogen biogeography. Royal Society Open Science, 2019, 6, 190883.	2.4	19
21	EcologicalNetworks.jl: analysing ecological networks of species interactions. Ecography, 2019, 42, 1850-1861.	4.5	13
22	Functional Diversity: An Epistemic Roadmap. BioScience, 2019, 69, 800-811.	4.9	23
23	Ecogeographical rules and the macroecology of food webs. Global Ecology and Biogeography, 2019, 28, 1204-1218.	5.8	34
24	Ecological Data Should Not Be So Hard to Find and Reuse. Trends in Ecology and Evolution, 2019, 34, 494-496.	8.7	52
25	Artificial Intelligence for Ecological and Evolutionary Synthesis. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	16
26	Inferring predator–prey interactions in food webs. Methods in Ecology and Evolution, 2019, 10, 356-367.	5.2	35
27	Complex Ecological Networks. , 2019, , 536-545.		3
28	Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.	4.5	85
29	Revealing biases in the sampling of ecological interaction networks. PeerJ, 2019, 7, e7566.	2.0	15
30	Management, Archiving, and Sharing for Biologists and the Role of Research Institutions in the Technology-Oriented Age. BioScience, 2018, 68, 400-411.	4.9	15
31	Interactions retain the coâ€phylogenetic matching that communities lost. Oikos, 2018, 127, 230-238.	2.7	6
32	Homogenization of species composition and species association networks are decoupled. Global Ecology and Biogeography, 2018, 27, 1481-1491.	5.8	19
33	Identifying a common backbone of interactions underlying food webs from different ecosystems. Nature Communications, 2018, 9, 2603.	12.8	34
34	Compositional turnover in host and parasite communities does not change network structure. Ecography, 2018, 41, 1534-1542.	4.5	24
35	Network structure and local adaptation in coâ€evolving bacteria–phage interactions. Molecular Ecology, 2017, 26, 1764-1777.	3.9	38
36	paco: implementing Procrustean Approach to Cophylogeny in R. Methods in Ecology and Evolution, 2017, 8, 932-940.	5.2	98

#	Article	IF	CITATIONS
37	Linear filtering reveals false negatives in species interaction data. Scientific Reports, 2017, 7, 45908.	3.3	18
38	Hosts, parasites and their interactions respond to different climatic variables. Global Ecology and Biogeography, 2017, 26, 942-951.	5.8	62
39	Simulations of biomass dynamics in community food webs. Methods in Ecology and Evolution, 2017, 8, 881-886.	5.2	19
40	Sustainable computational science: the ReScience initiative. PeerJ Computer Science, 2017, 3, e142.	4.5	86
41	Ecological interactions and the Netflix problem. PeerJ, 2017, 5, e3644.	2.0	39
42	Using Peer Review to Support Development of Community Resources for Research Data Management. Journal of Escience Librarianship, 2017, 6, e1114.	0.3	1
43	Temperature and trophic structure are driving microbial productivity along a biogeographical gradient. Ecography, 2016, 39, 981-989.	4.5	8
44	The structure of probabilistic networks. Methods in Ecology and Evolution, 2016, 7, 303-312.	5.2	49
45	Describe, understand and predict: why do we need networks in ecology?. Functional Ecology, 2016, 30, 1878-1882.	3.6	86
46	BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods in Ecology and Evolution, 2016, 7, 127-132.	5.2	58
47	mangal – making ecological network analysis simple. Ecography, 2016, 39, 384-390.	4.5	53
48	Synthetic datasets and community tools for the rapid testing of ecological hypotheses. Ecography, 2016, 39, 402-408.	4.5	32
49	Ten Simple Rules for Digital Data Storage. PLoS Computational Biology, 2016, 12, e1005097.	3.2	74
50	When is co-phylogeny evidence ofcoevolution?. , 2015, , 420-433.		12
51	A Continuum of Specialists and Generalists in Empirical Communities. PLoS ONE, 2015, 10, e0114674.	2.5	18
52	The spread of a novel behavior in wild chimpanzees: New insights into the ape cultural mind. Communicative and Integrative Biology, 2015, 8, e1017164.	1.4	15
53	The next generation of <i>action ecology</i> : novel approaches towards global ecological research. Ecosphere, 2015, 6, 1-16.	2.2	21
54	Connecting people and ideas from around the world: global innovation platforms for nextâ€generation ecology and beyond. Ecosphere, 2015, 6, 1-11.	2.2	1,488

#	Article	IF	CITATIONS
55	Beyond species: why ecological interaction networks vary through space and time. Oikos, 2015, 124, 243-251.	2.7	347
56	Using neutral theory to reveal the contribution of meta-community processes to assembly in complex landscapes. Journal of Limnology, 2014, 73, .	1.1	8
57	Social Network Analysis Shows Direct Evidence for Social Transmission of Tool Use in Wild Chimpanzees. PLoS Biology, 2014, 12, e1001960.	5.6	224
58	Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists. Ecology and Evolution, 2014, 4, 3841-3850.	1.9	4
59	When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ, 2014, 2, e251.	2.0	95
60	Lack of quantitative training among early-career ecologists: a survey of the problem and potential solutions. PeerJ, 2014, 2, e285.	2.0	30
61	The structure of natural microbial enemy-victim networks. Ecological Processes, 2013, 2, .	3.9	11
62	Phage–bacteria infection networks. Trends in Microbiology, 2013, 21, 82-91.	7.7	273
63	Inferring food web structure from predator–prey body size relationships. Methods in Ecology and Evolution, 2013, 4, 1083-1090.	5.2	185
64	Trophic complementarity drives the biodiversity–ecosystem functioning relationship in food webs. Ecology Letters, 2013, 16, 853-861.	6.4	141
65	The Case for Open Preprints in Biology. PLoS Biology, 2013, 11, e1001563.	5.6	60
66	Highâ€Throughput Sequencing: A Roadmap Toward Community Ecology. Ecology and Evolution, 2013, 3, 1125-1139.	1.9	36
67	Facultative and obligate parasite communities exhibit different network properties. Parasitology, 2013, 140, 1340-1345.	1.5	26
68	Moving toward a sustainable ecological science: don't let data go to waste!. Ideas in Ecology and Evolution, 2013, 6, .	0.1	20
69	An a posteriori measure of network modularity. F1000Research, 2013, 2, 130.	1.6	13
70	Trophic network structure emerges through antagonistic coevolution in temporally varying environments. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 299-308.	2.6	30
71	The dissimilarity of species interaction networks. Ecology Letters, 2012, 15, 1353-1361.	6.4	341
72	A comparative study of ecological specialization estimators. Methods in Ecology and Evolution, 2012, 3, 537-544.	5.2	114

4

#	Article	IF	CITATIONS
73	Terminal investment induced by a bacteriophage in a rhizosphere bacterium. F1000Research, 2012, 1, 21.	1.6	4
74	Terminal investment induced by a bacteriophage in a rhizosphere bacterium. F1000Research, 2012, 1, 21.	1.6	7
75	Morphological and Molecular Evolution Are Not Linked in Lamellodiscus (Plathyhelminthes,) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 28
76	A conceptual framework for the evolution of ecological specialisation. Ecology Letters, 2011, 14, 841-851.	6.4	267
77	Resource availability affects the structure of a natural bacteria–bacteriophage community. Biology Letters, 2011, 7, 201-204.	2.3	51
78	The digitize Package: Extracting Numerical Data from Scatterplots. R Journal, 2011, 3, 25.	1.8	85
79	Putative speciation events in Lamellodiscus (Monogenea: Diplectanidae) assessed by a morphometric approach. Biological Journal of the Linnean Society, 0, 99, 559-569.	1.6	14
80	Data-based, synthesis-driven: Setting the agenda for computational ecology. Ideas in Ecology and Evolution, 0, 12, .	0.1	5
81	An a posteriori measure of network modularity. F1000Research, 0, 2, 130.	1.6	9
82	Mangal:ÂAn open infrastructure for ecological interactions. Biodiversity Information Science and Standards, 0, 3, .	0.0	4
83	Best publishing practices to improve user confidence in scientific software. Ideas in Ecology and Evolution, 0, 8, .	0.1	12

Dissimilarity of species interaction networks: quantifying the effect of turnover and rewiring. , 0, 2, .