Timothée Poisot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2746991/publications.pdf

Version: 2024-02-01

84 papers 6,000 citations

30 h-index 71 g-index

125 all docs

125
docs citations

125 times ranked 10460 citing authors

#	Article	IF	CITATIONS
1	Connecting people and ideas from around the world: global innovation platforms for nextâ€generation ecology and beyond. Ecosphere, 2015, 6, 1-11.	2.2	1,488
2	Beyond species: why ecological interaction networks vary through space and time. Oikos, 2015, 124, 243-251.	2.7	347
3	Analysing ecological networks of species interactions. Biological Reviews, 2019, 94, 16-36.	10.4	347
4	The dissimilarity of species interaction networks. Ecology Letters, 2012, 15, 1353-1361.	6.4	341
5	Phage–bacteria infection networks. Trends in Microbiology, 2013, 21, 82-91.	7.7	273
6	A conceptual framework for the evolution of ecological specialisation. Ecology Letters, 2011, 14, 841-851.	6.4	267
7	Social Network Analysis Shows Direct Evidence for Social Transmission of Tool Use in Wild Chimpanzees. PLoS Biology, 2014, 12, e1001960.	5.6	224
8	Inferring food web structure from predator–prey body size relationships. Methods in Ecology and Evolution, 2013, 4, 1083-1090.	5.2	185
9	Trophic complementarity drives the biodiversity–ecosystem functioning relationship in food webs. Ecology Letters, 2013, 16, 853-861.	6.4	141
10	A comparative study of ecological specialization estimators. Methods in Ecology and Evolution, 2012, 3, 537-544.	5.2	114
11	paco: implementing Procrustean Approach to Cophylogeny in R. Methods in Ecology and Evolution, 2017, 8, 932-940.	5.2	98
12	When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ, 2014, 2, e251.	2.0	95
13	Describe, understand and predict: why do we need networks in ecology?. Functional Ecology, 2016, 30, 1878-1882.	3.6	86
14	Sustainable computational science: the ReScience initiative. PeerJ Computer Science, 2017, 3, e142.	4.5	86
15	Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.	4.5	85
16	The digitize Package: Extracting Numerical Data from Scatterplots. R Journal, 2011, 3, 25.	1.8	85
17	The marine fish food web is globally connected. Nature Ecology and Evolution, 2019, 3, 1153-1161.	7.8	76
18	Ten Simple Rules for Digital Data Storage. PLoS Computational Biology, 2016, 12, e1005097.	3.2	74

#	Article	IF	CITATIONS
19	Key Questions for Next-Generation Biomonitoring. Frontiers in Environmental Science, 2020, 7, .	3.3	68
20	Hosts, parasites and their interactions respond to different climatic variables. Global Ecology and Biogeography, 2017, 26, 942-951.	5.8	62
21	The Case for Open Preprints in Biology. PLoS Biology, 2013, 11, e1001563.	5.6	60
22	Refocusing multiple stressor research around the targets and scales of ecological impacts. Nature Ecology and Evolution, 2021, 5, 1478-1489.	7.8	59
23	The science of the host–virus network. Nature Microbiology, 2021, 6, 1483-1492.	13.3	59
24	BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods in Ecology and Evolution, 2016, 7, 127-132.	5.2	58
25	mangal – making ecological network analysis simple. Ecography, 2016, 39, 384-390.	4.5	53
26	Ecological Data Should Not Be So Hard to Find and Reuse. Trends in Ecology and Evolution, 2019, 34, 494-496.	8.7	52
27	Resource availability affects the structure of a natural bacteria–bacteriophage community. Biology Letters, 2011, 7, 201-204.	2.3	51
28	The structure of probabilistic networks. Methods in Ecology and Evolution, 2016, 7, 303-312.	5.2	49
29	Ecological interactions and the Netflix problem. PeerJ, 2017, 5, e3644.	2.0	39
30	Network structure and local adaptation in coâ€evolving bacteria–phage interactions. Molecular Ecology, 2017, 26, 1764-1777.	3.9	38
31	Global knowledge gaps in species interaction networks data. Journal of Biogeography, 2021, 48, 1552-1563.	3.0	38
32	Highâ€Throughput Sequencing: A Roadmap Toward Community Ecology. Ecology and Evolution, 2013, 3, 1125-1139.	1.9	36
33	Inferring predator–prey interactions in food webs. Methods in Ecology and Evolution, 2019, 10, 356-367.	5. 2	35
34	Identifying a common backbone of interactions underlying food webs from different ecosystems. Nature Communications, 2018, 9, 2603.	12.8	34
35	Ecogeographical rules and the macroecology of food webs. Global Ecology and Biogeography, 2019, 28, 1204-1218.	5.8	34
36	A roadmap towards predicting species interaction networks (across space and time). Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20210063.	4.0	33

#	Article	IF	CITATIONS
37	Synthetic datasets and community tools for the rapid testing of ecological hypotheses. Ecography, 2016, 39, 402-408.	4.5	32
38	Trophic network structure emerges through antagonistic coevolution in temporally varying environments. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 299-308.	2.6	30
39	Lack of quantitative training among early-career ecologists: a survey of the problem and potential solutions. Peerl, 2014, 2, e285.	2.0	30
40	Morphological and Molecular Evolution Are Not Linked in Lamellodiscus (Plathyhelminthes,) Tj ETQq0 0 0 rgBT /	Overlock 1 2.5	10 Tf 50 622 T
41	Facultative and obligate parasite communities exhibit different network properties. Parasitology, 2013, 140, 1340-1345.	1.5	26
42	Compositional turnover in host and parasite communities does not change network structure. Ecography, 2018, 41, 1534-1542.	4.5	24
43	Functional Diversity: An Epistemic Roadmap. BioScience, 2019, 69, 800-811.	4.9	23
44	The Global Virome in One Network (VIRION): an Atlas of Vertebrate-Virus Associations. MBio, 2022, 13, e0298521.	4.1	23
45	The next generation of <i>action ecology</i> : novel approaches towards global ecological research. Ecosphere, 2015, 6, 1-16.	2.2	21
46	Moving toward a sustainable ecological science: don't let data go to waste!. Ideas in Ecology and Evolution, 2013, 6, .	0.1	20
47	Simulations of biomass dynamics in community food webs. Methods in Ecology and Evolution, 2017, 8, 881-886.	5.2	19
48	Homogenization of species composition and species association networks are decoupled. Global Ecology and Biogeography, 2018, 27, 1481-1491.	5.8	19
49	Testing predictability of disease outbreaks with a simple model of pathogen biogeography. Royal Society Open Science, 2019, 6, 190883.	2.4	19
50	A Continuum of Specialists and Generalists in Empirical Communities. PLoS ONE, 2015, 10, e0114674.	2.5	18
51	Linear filtering reveals false negatives in species interaction data. Scientific Reports, 2017, 7, 45908.	3.3	18
52	Artificial Intelligence for Ecological and Evolutionary Synthesis. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	16
53	SVD Entropy Reveals the High Complexity of Ecological Networks. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	16
54	The spread of a novel behavior in wild chimpanzees: New insights into the ape cultural mind. Communicative and Integrative Biology, 2015, 8, e1017164.	1.4	15

#	Article	IF	CITATIONS
55	Management, Archiving, and Sharing for Biologists and the Role of Research Institutions in the Technology-Oriented Age. BioScience, 2018, 68, 400-411.	4.9	15
56	Data Proliferation, Reconciliation, and Synthesis in Viral Ecology. BioScience, 2021, 71, 1148-1156.	4.9	15
57	Revealing biases in the sampling of ecological interaction networks. PeerJ, 2019, 7, e7566.	2.0	15
58	Putative speciation events in Lamellodiscus (Monogenea: Diplectanidae) assessed by a morphometric approach. Biological Journal of the Linnean Society, 0, 99, 559-569.	1.6	14
59	EcologicalNetworks.jl: analysing ecological networks of species interactions. Ecography, 2019, 42, 1850-1861.	4.5	13
60	An a posteriori measure of network modularity. F1000Research, 2013, 2, 130.	1.6	13
61	When is co-phylogeny evidence ofcoevolution?. , 2015, , 420-433.		12
62	Best publishing practices to improve user confidence in scientific software. Ideas in Ecology and Evolution, 0, 8, .	0.1	12
63	Evaluating ecological uniqueness over broad spatial extents using species distribution modelling. Oikos, 2022, 2022, .	2.7	12
64	The structure of natural microbial enemy-victim networks. Ecological Processes, 2013, 2, .	3.9	11
65	Environment–host–microbial interactions shape the <i>Sarraceniapurpurea</i> microbiome at the continental scale. Ecology, 2021, 102, e03308.	3.2	10
66	Revisiting the Links-Species Scaling Relationship in Food Webs. Patterns, 2020, 1, 100079.	5.9	9
67	An a posteriori measure of network modularity. F1000Research, 0, 2, 130.	1.6	9
68	Using neutral theory to reveal the contribution of meta-community processes to assembly in complex landscapes. Journal of Limnology, 2014, 73, .	1.1	8
69	Temperature and trophic structure are driving microbial productivity along a biogeographical gradient. Ecography, 2016, 39, 981-989.	4.5	8
70	Terminal investment induced by a bacteriophage in a rhizosphere bacterium. F1000Research, 2012, 1, 21.	1.6	7
71	Interactions retain the coâ€phylogenetic matching that communities lost. Oikos, 2018, 127, 230-238.	2.7	6
72	SimpleSDMLayers.jl and GBIF.jl: A Framework for Species Distribution Modeling in Julia. Journal of Open Source Software, 2021, 6, 2872.	4.6	6

#	Article	IF	CITATIONS
73	Data-based, synthesis-driven: Setting the agenda for computational ecology. Ideas in Ecology and Evolution, 0, 12 , .	0.1	5
74	Sampling and asymptotic network properties of spatial multiâ€trophic networks. Oikos, 2021, 130, 2250-2259.	2.7	5
75	Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists. Ecology and Evolution, 2014, 4, 3841-3850.	1.9	4
76	Terminal investment induced by a bacteriophage in a rhizosphere bacterium. F1000Research, 2012, 1, 21.	1.6	4
77	Mangal:ÂAn open infrastructure for ecological interactions. Biodiversity Information Science and Standards, 0, 3, .	0.0	4
78	Food web reconstruction through phylogenetic transfer of lowâ€rank network representation. Methods in Ecology and Evolution, 2022, 13, 2838-2849.	5.2	4
79	Dissimilarity of species interaction networks: quantifying the effect of turnover and rewiring., 0, 2, .		4
80	Complex Ecological Networks. , 2019, , 536-545.		3
81	Optimal transportation theory for species interaction networks. Ecology and Evolution, 2021, 11, 3841-3855.	1.9	3
82	Mangal.jl and EcologicalNetworks.jl: Two complementary packages for analyzing ecological networks in Julia. Journal of Open Source Software, 2021, 6, 2721.	4.6	3
83	Beta and phylogenetic diversities tell complementary stories about ecological networks biogeography. Parasitology, 2021, 148, 835-842.	1.5	2
84	Using Peer Review to Support Development of Community Resources for Research Data Management. Journal of Escience Librarianship, 2017, 6, e1114.	0.3	1