Howard Baer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2745898/publications.pdf

Version: 2024-02-01

199 papers 9,670 citations

56 h-index 48315 88 g-index

203 all docs

203 docs citations

times ranked

203

5878 citing authors

#	Article	lF	CITATIONS
1	Comparison of SUSY spectra generators for natural SUSY and string landscape predictions. European Physical Journal C, 2022, 82, 1.	3.9	9
2	The cosmological moduli problem and naturalness. Journal of High Energy Physics, 2022, 2022, 1.	4.7	10
3	Radiative natural supersymmetry emergent from the string landscape. Journal of High Energy Physics, 2022, 2022, 1.	4.7	7
4	An anthropic solution to the cosmological moduli problem. Journal of High Energy Astrophysics, 2022, 34, 33-39.	6.7	0
5	On dark radiation from string moduli decay to ALPs. Journal of High Energy Astrophysics, 2022, 34, 40-48.	6.7	O
6	New angular and other cuts to improve the Higgsino signal at the LHC. Physical Review D, 2022, 105, .	4.7	7
7	Detecting heavy Higgs bosons from natural SUSY at a 100ÂTeV hadron collider. Physical Review D, 2022, 105, .	4.7	1
8	Landscape Higgs boson and sparticle mass predictions from a logarithmic soft term distribution. Physical Review D, 2021, 103, .	4.7	6
9	Publisher's Note: Phenomenological profile of top squarks from natural supersymmetry at the LHC [Phys. Rev. D 95 , 055012 (2017)]. Physical Review D, 2021, 103, .	4.7	2
10	Distribution of supersymmetry \hat{l} parameter and Peccei-Quinn scale fa from the landscape. Physical Review D, 2021, 104, .	4.7	5
11	Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 820, 136480.	4.1	41
12	Supersymmetric particle and Higgs boson masses from the landscape: Dynamical versus spontaneous supersymmetry breaking. Physical Review D, 2021, 104, .	4.7	2
13	String landscape guide to soft SUSY breaking terms. Physical Review D, 2020, 102, .	4.7	12
14	ILC as a natural SUSY discovery machine and precision microscope: From light Higgsinos to tests of unification. Physical Review D, 2020, 101, .	4.7	11
15	The LHC higgsino discovery plane for present and future SUSY searches. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 810, 135777.	4.1	12
16	Mirage mediation from the landscape. Physical Review Research, 2020, 2, .	3.6	8
17	Status of weak scale supersymmetry after LHC Run 2 and ton-scale noble liquid WIMP searches. European Physical Journal: Special Topics, 2020, 229, 3085-3141.	2.6	38
18	Revisiting the SUSY <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>$\hat{l}^{1}/4$</mml:mi></mml:math> problem and its solutions in the LHC era. Physical Review D, 2019, 99, .	4.7	38

#	Article	IF	Citations
19	LHC SUSY and WIMP dark matter searches confront the string theory landscape. Journal of High Energy Physics, 2019, 2019, 1.	4.7	12
20	Gravity safe, electroweak natural axionic solution to strong CP and SUSY $\hat{1}\frac{1}{4}$ problems. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 790, 58-63.	4.1	18
21	Naturalness versus stringy naturalness with implications for collider and dark matter searches. Physical Review Research, 2019, 1, .	3.6	21
22	Lepton flavor violation from SUSY with nonuniversal scalars. Physical Review Research, 2019, 1, .	3.6	4
23	Landscape solution to the SUSY flavor and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi><td>> < /മാബി:m</td><td>rovæox/mmlm</td></mml:mrow></mml:math>	> < /മാ ബി:m	rovæox/mmlm
24	Is the magnitude of the Peccei–Quinn scale set by the landscape?. European Physical Journal C, 2019, 79, 1.	3.9	5
25	Higgs and superparticle mass predictions from the landscape. Journal of High Energy Physics, 2018, 2018, 1.	4.7	26
26	LHC luminosity and energy upgrades confront natural supersymmetry models. Physical Review D, 2018, 98, .	4.7	27
27	Is natural higgsino-only dark matter excluded?. European Physical Journal C, 2018, 78, 1.	3.9	28
28	Anomaly-mediated SUSY breaking model retrofitted for naturalness. Physical Review D, 2018, 98, .	4.7	16
29	Aspects of the same-sign diboson signature from wino pair production with light higgsinos at the high luminosity LHC. Physical Review D, 2018, 97, .	4.7	13
30	Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 024-024.	5 . 4	20
31	Phenomenological profile of top squarks from natural supersymmetry at the LHC. Physical Review D, 2017, 95, .	4.7	22
32	Affleck-Dine leptogenesis with varying Peccei-Quinn scale. Journal of High Energy Physics, 2017, 2017, 1.	4.7	5
33	What hadron collider is required to discover or falsify natural supersymmetry?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 451-455.	4.1	15
34	Superparticle phenomenology from the natural mini-landscape. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
35	Reach of the high-energy LHC for gluinos and top squarks in SUSY models with light Higgsinos. Physical Review D, 2017, 96, .	4.7	21
36	Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY. European Physical Journal C, 2017, 77, 1.	3.9	26

#	Article	IF	Citations
37	Naturalness and light Higgsinos: why ILC is the right machine for SUSY discovery. , 2017, , .		2
38	SUSY under siege from direct and indirect WIMP detection experiments. Physical Review D, 2016, 94, .	4.7	53
39	Precision gaugino mass measurements as a probe of large trilinear soft terms at the ILC. Physical Review D, 2016, 94, .	4.7	2
40	Generalized focus point and mass spectra comparison of highly natural SUGRA GUT models. Physical Review D, 2016, 93, .	4.7	5
41	Upper bounds on sparticle masses from naturalness or how to disprove weak scale supersymmetry. Physical Review D, 2016, 93, .	4.7	49
42	(Mainly) axion dark matter. AIP Conference Proceedings, 2016, , .	0.4	3
43	Natural generalized mirage mediation. Physical Review D, 2016, 94, .	4.7	27
44	Multichannel assault on natural supersymmetry at the high luminosity LHC. Physical Review D, 2016, 94, .	4.7	21
45	Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 012-012.	5.4	13
46	The Higgs mass and natural supersymmetric spectrum from the landscape. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 758, 113-117.	4.1	27
47	Natural SUSY with a bino- or wino-like LSP. Physical Review D, 2015, 91, .	4.7	30
48	Mixed axion/gravitino dark matter from SUSY models with heavy axinos. Physical Review D, 2015, 91, .	4.7	12
49	Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness. Physical Review D, 2015, 92, .	4.7	20
50	Distinguishing LSP archetypes via gluino pair production at LHC13. Physical Review D, 2015, 92, .	4.7	10
51	Supersymmetry with Radiatively-Driven Naturalness: Implications for WIMP and Axion Searches. Symmetry, 2015, 7, 788-814.	2.2	20
52	Natural little hierarchy for SUSY from radiative breaking of the Peccei-Quinn symmetry. Physical Review D, 2015, 91, .	4.7	22
53	Supergravity gauge theories strike back: there is no crisis for SUSY but a new collider may be required for discovery. Physica Scripta, 2015, 90, 068003.	2.5	24
54	Dark matter production in the early Universe: Beyond the thermal WIMP paradigm. Physics Reports, 2015, 555, 1-60.	25.6	261

#	Article	IF	CITATIONS
55	Monojet plus soft dilepton signal from light higgsino pair production at LHC14. Physical Review D, 2014, 90, .	4.7	88
56	Supersymmetry and dark matter post LHC8: Why we may expect both axion and WIMP detection. , 2014, , .		3
57	Implications of naturalness for the heavy Higgs bosons of supersymmetry. Physical Review D, 2014, 90, .	4.7	11
58	Mainly axion cold dark matter from natural supersymmetry. Physical Review D, 2014, 89, .	4.7	47
59	Monojets and monophotons from light Higgsino pair production at LHC14. Physical Review D, 2014, 89,	4.7	51
60	Naturalness implies intra-generational degeneracy for decoupled squarks and sleptons. Physical Review D, 2014, 89, .	4.7	17
61	Physics at a Higgsino factory. Journal of High Energy Physics, 2014, 2014, 1.	4.7	44
62	SUSY models under siege: LHC constraints and electroweak fine-tuning. Physical Review D, 2014, 89, .	4.7	83
63	Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 082-082.	5.4	48
64	Radiatively-driven natural supersymmetry at the LHC. Journal of High Energy Physics, 2013, 2013, 1.	4.7	44
65	Post-LHC8 supersymmetry benchmark points for ILC physics. Physical Review D, 2013, 88, .	4.7	17
66	Direct and indirect detection of higgsino-like WIMPs: Concluding the story of electroweak naturalness. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 726, 330-336.	4.1	59
67	Mixed axion/neutralino dark matter in the SUSY DFSZ axion model. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 028-028.	5.4	60
68	Dark radiation constraints on mixed Axion/Neutralino dark matter. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 041-041.	5.4	37
69	Radiative natural supersymmetry with mixed axion/higgsino cold dark matter. , 2013, , .		1
70	Post-LHC7 fine-tuning in the minimal supergravity/CMSSM model with a 125ÂGeV Higgs boson. Physical Review D, 2013, 87, .	4.7	72
71	Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass. Physical Review D, 2013, 87, .	4.7	143
72	Same-Sign Diboson Signature from Supersymmetry Models with Light Higgsinos at the LHC. Physical Review Letters, 2013, 110, 151801.	7.8	51

#	Article	IF	CITATIONS
73	How conventional measures overestimate electroweak fine-tuning in supersymmetric theory. Physical Review D, 2013, 88, .	4.7	88
74	Electroweak versus high-scale fine tuning in the 19-parameter supergravity model. Physical Review D, 2013, 88, .	4.7	7
75	Radiative Natural Supersymmetry with Mixed Axion/Higgsino Cold Dark Matter. Springer Proceedings in Physics, 2013, , 3-15.	0.2	1
76	Radiative Natural Supersymmetry with a 125ÂGeV Higgs Boson. Physical Review Letters, 2012, 109, 161802.	7.8	232
77	Neutralino dark matter in mSUGRA/CMSSM with a 125ÂGeV light Higgs scalar. Journal of High Energy Physics, 2012, 2012, 1.	4.7	106
78	Natural supersymmetry: LHC, dark matter and ILC searches. Journal of High Energy Physics, 2012, 2012, 1.	4.7	118
79	Yukawa-unified natural supersymmetry. Journal of High Energy Physics, 2012, 2012, 1.	4.7	12
80	Prospects for Higgs boson searches with the tribottom channel in unified supersymmetric models. Physical Review D, 2012, 85, .	4.7	1
81	Implications of a 125ÂGeV Higgs scalar for the LHC supersymmetry and neutralino dark matter searches. Physical Review D, 2012, 85, .	4.7	149
82	Coupled Boltzmann calculation of mixed axion/neutralino cold dark matter production in the early universe. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 036-036.	5.4	57
83	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msqrt><mml:mi>s</mml:mi></mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>7</mml:mn> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mn>5</mml:mn> <mml:mo>â€"</mml:mo> <mml:mn>30</mml:mn> <mml:mtext>â€%<td>4.7</td><td>Э</td></mml:mtext>	4.7	Э
84	Physical Review D, 2012, 85, Discovery potential for supersymmetry at a high luminosity upgrade of LHC14. Physical Review D, 2012, 86,.	4.7	34
85	<pre><mml:math 1998="" display="inline" http:="" math="" mathml"="" www.w3.org="" xmins:mmi="http://www.w3.org/1998/iviath/iviath/iviath/iviath/iviath/iviath/iviath/iviath/iviath/iviath/iviath/iviath/plus missing-<mml:math</td><td>4.7</td><td>23</td></tr><tr><td>86</td><td>Sparticle mass spectra from SU(5) SUSY GUT models with b â^' Ï,, Yukawa coupling unification. Journal of High Energy Physics, 2012, 2012, 1.</td><td>4.7</td><td>24</td></tr><tr><td>87</td><td>WZ plus missing-E T signal from gaugino pair production at LHC7. Journal of High Energy Physics, 2012, 2012, 1.</td><td>4.7</td><td>12</td></tr><tr><td>88</td><td>A heavier gluino from t–b–Î,, Yukawa-unified SUSY. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 712, 250-254.</td><td>4.1</td><td>28</td></tr><tr><td>89</td><td>Exploring neutralino dark matter resonance annihilation via<mml:math xmlns:mml="><mml:mi>b</mml:mi><mml:mi>A</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:ri>the LHC. Physical Review D. 2011. 84</mml:ri></mml:math></pre>	ni [‡] H <td>l:<mark>1</mark>i><mml:< td=""></mml:<></td>	l: <mark>1</mark> i> <mml:< td=""></mml:<>
90	Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 039-039.	5. 4	27

#	Article	IF	Citations
91	Mixed axion/neutralino cold dark matter in supersymmetric models. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 031-031.	5.4	83
92	Testing the gaugino AMSB model at the Tevatron via slepton pair production. Journal of High Energy Physics, 2011, 2011, 1.	4.7	4
93	Some necessary conditions for allowing the PQ scale as high as M GUT in SUSY models with an axino or neutralino LSP. Journal of High Energy Physics, 2011, 2011, 1.	4.7	21
94	Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider. Journal of High Energy Physics, 2011, 2011, 1.	4.7	101
95	Implications of a high mass light MSSM Higgs scalar for supersymmetry searches at the LHC. Physical Review D, 2011, 84, .	4.7	13
96	Fine-tuning favors mixed axion/axino cold dark matter overÂneutralinos in the minimal supergravity model. European Physical Journal C, 2010, 68, 523-537.	3.9	18
97	Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T. Journal of High Energy Physics, 2010, 2010, 1 .	4.7	34
98	Gaugino anomaly mediated SUSY breaking: phenomenology and prospects for the LHC. Journal of High Energy Physics, 2010, 2010, 1.	4.7	22
99	Capability of LHC to discover supersymmetry with $\$ sqrt $\{s\} = 7$; $\{ext\{TeV\}\}\$ and 1 fbâ^'1. Journal of High Energy Physics, 2010, 2010, 1.	4.7	48
100	Effective supersymmetry at the LHC. Journal of High Energy Physics, 2010, 2010, 1.	4.7	24
101	Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model. Journal of High Energy Physics, 2010, 2010, 1.	4.7	30
102	Beyond the Higgs boson at the Tevatron: Detecting gluinos from Yukawa-unified SUSY. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 685, 72-78.	4.1	6
103	Computational Tools for Supersymmetry Calculations. Advanced Series on Directions in High Energy Physics, 2010, , 446-468.	0.7	0
104	Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 014-014.	5.4	26
105	Reconciling thermal leptogenesis with the gravitino problem in SUSY models with mixed axion/axino dark matter. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 040-040.	5.4	12
106	Collider Signal II: Missing ET Signatures and Dark Matter Connection. , 2010, , .		0
107	Prospects for hypercharged anomaly mediated SUSY breaking at the LHC. Journal of High Energy Physics, 2009, 2009, 078-078.	4.7	8
108	Collider, direct and indirect detection of supersymmetric dark matter. New Journal of Physics, 2009, 11, 105024.	2.9	22

#	Article	IF	Citations
109	Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold and warm dark matter. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 002-002.	5.4	57
110	Supersymmetry discovery potential of the LHC ats1/2= 10 and 14 TeV without and with missingET. Journal of High Energy Physics, 2009, 2009, 063-063.	4.7	58
111	Mainly axion cold dark matter in the minimal supergravity model. Journal of High Energy Physics, 2009, 2009, 080-080.	4.7	33
112	Dark Matter from SUGRA GUTs: mSUGRA, NUSUGRA and Yukawa-unified SUGRA. , 2009, , .		0
113	Early SUSY discovery at LHC via sparticle cascade decays to same-sign and multimuon states. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 674, 49-53.	4.1	15
114	Is "just-so" Higgs splitting needed for <i>t</i> ê'' <i>b</i> ê''i, Yukawa unified SUSY GUTs?. Journal of High Energy Physics, 2009, 2009, 005-005.	4.7	49
115	overflow="scroll"> <mml:mi mathvariant="italic">SO</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>10</mml:mn> <mml:mo) 0.784314="" 1="" 10="" 50="" and="" axino="" b:="" dark="" elementary="" etqq1="" high-energy<="" letters.="" matter.="" nuclear.="" overlock="" particle="" physics="" rgbt="" section="" td="" tf="" tj=""><td>502.Td (s</td><td>tretchy="false 29</td></mml:mo)>	502.Td (s	tretchy="false 29
116	Physics, 2008, 666, 5-9. Supersymmetric backgrounds to standard model calibration processes at the CERN LHC. Physical Review D, 2008, 78, .	4.7	6
117	Collider signals and neutralino dark matter detection in relic-density-consistent models without universality. Journal of High Energy Physics, 2008, 2008, 058-058.	4.7	47
118	Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs. Journal of High Energy Physics, 2008, 2008, 056-056.	4.7	100
119	Prospects for Yukawa unified SO(10) SUSY GUTs at the CERN LHC. Journal of High Energy Physics, 2008, 2008, 079-079.	4.7	23
120	Mixed higgsino dark matter from a large SU(2) gaugino mass. Journal of High Energy Physics, 2007, 2007, 088-088.	4.7	22
121	Target dark matter detection rates in models with a well-tempered neutralino. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 017-017.	5.4	47
122	Collider and dark matter phenomenology of models with mirage unification. Journal of High Energy Physics, 2007, 2007, 033-033.	4.7	39
123	Precision gluino mass at the CERN LHC in supersymmetric models with decoupled scalars. Physical Review D, 2007, 75, .	4.7	50
124	Measuring modular weights in mirage unification models at the LHC and ILC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 641, 447-451.	4.1	28
125	Mixed Higgsino Dark Matter from a reduced SU(3) gaugino mass: consequences for dark matter and collider searches. Journal of High Energy Physics, 2006, 2006, 041-041.	4.7	29
126	Collider and dark matter searches in models with mixed modulus-anomaly mediated SUSY breaking. Journal of High Energy Physics, 2006, 2006, 041-041.	4.7	34

#	Article	IF	Citations
127	Supersymmetry: Theory Overview. AIP Conference Proceedings, 2005, , .	0.4	O
128	Exploring the BWCA (Bino-Wino co-annihilation) scenario for neutralino dark matter. Journal of High Energy Physics, 2005, 2005, 011-011.	4.7	68
129	Model independent approach to focus point supersymmetry: from dark matter to collider searches. Journal of High Energy Physics, 2005, 2005, 020-020.	4.7	85
130	Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses. Journal of High Energy Physics, 2005, 2005, 065-065.	4.7	237
131	Low energy antideuterons: shedding light on dark matter. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 008-008.	5.4	78
132	Neutralino cold dark matter in a one-parameter extension of the minimal supergravity model. Physical Review D, 2005, 71, .	4.7	106
133	COLLIDER, DIRECT AND INDIRECT DETECTION OF SUSY DARK MATTER., 2005, , .		0
134	Two Photon Background and the Reach of a Linear Collider for Supersymmetry in WMAP Favoured Coannihilation Regions. Journal of High Energy Physics, 2004, 2004, 061-061.	4.7	32
135	Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model. Journal of High Energy Physics, 2004, 2004, 007-007.	4.7	56
136	SUSY Normal Scalar Mass Hierarchy Reconciles (g-2),bÂs, and Relic Density. Journal of High Energy Physics, 2004, 2004, 044-044.	4.7	53
137	Indirect, direct and collider detection of neutralino dark matter in the minimal supergravity model. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 005-005.	5.4	24
138	Direct detection of dark matter in supersymmetric models. Journal of Cosmology and Astroparticle Physics, 2003, 2003, 007-007.	5.4	72
139	Yukawa coupling unification in supersymmetric models. Journal of High Energy Physics, 2003, 2003, 023-023.	4.7	75
140	Â2analysis of the minimal supergravity model including WMAP, (gÂ2)ÂandbÂs constraints. Journal of Cosmology and Astroparticle Physics, 2003, 2003, 006-006.	5.4	158
141	Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses. Journal of High Energy Physics, 2003, 2003, 020-020.	4.7	33
142	Updated reach of CERN LHC and constraints from relic density, bâ†'s \hat{l}^3 and a \hat{l}^4 in the mSUGRA model. Journal of High Energy Physics, 2003, 2003, 054-054.	4.7	155
143	Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models. Physical Review D, 2002, 65, .	4.7	17
144	Relating bottom quark mass inDR¯andMS¯regularization schemes. Physical Review D, 2002, 66, .	4.7	42

#	Article	IF	Citations
145	Updated Constraints on the Minimal Supergravity Model. Journal of High Energy Physics, 2002, 2002, 050-050.	4.7	124
146	Neutralino relic density in minimal supergravity with co-annihilations. Journal of High Energy Physics, 2002, 2002, 042-042.	4.7	164
147	Radiative Neutralino Decay in Supersymmetric Models. Journal of High Energy Physics, 2002, 2002, 038-038.	4.7	26
148	REVEALING SUSY AT COLLIDERS., 2002,,.		0
149	Sneutrino mass measurements ate+eâ^'linear colliders. Physical Review D, 2001, 64, .	4.7	7
150	Probing slepton mass nonuniversality ate+eâ^'linear colliders. Physical Review D, 2001, 63, .	4.7	14
151	Can precision measurements of slepton masses probe right handed neutrinos?. Physical Review D, 2001, 63, .	4.7	14
152	Supersymmetric SO(10) Grand Unified Models with Yukawa Unification and a Positive $\hat{l}^{1}/4$ Term. Physical Review Letters, 2001, 87, 211803.	7.8	75
153	Aspects of supersymmetric models with a radiatively driven inverted mass hierarchy. Physical Review D, 2001, 64, .	4.7	32
154	Impact of the muon anomalous magnetic moment on supersymmetric models. Physical Review D, 2001, 64, .	4.7	104
155	Calculable sparticle masses with radiatively driven inverted mass hierarchy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 475, 289-294.	4.1	35
156	Reach of the CERN LHC for the minimal anomaly-mediated SUSY breaking model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 488, 367-372.	4.1	62
157	Impact of physical principles at very high energy scales on the superparticle mass spectrum. Journal of High Energy Physics, 2000, 2000, 016-016.	4.7	76
158	Yukawa unified supersymmetricSO(10)model: Cosmology, rare decays, and collider searches. Physical Review D, 2000, 63, .	4.7	170
159	Trilepton signal for supersymmetry at the Fermilab Tevatron reexamined. Physical Review D, 2000, 61, .	4.7	54
160	Viable supersymmetric models with an inverted scalar mass hierarchy at the grand unified theory scale. Physical Review D, 2000, 63, .	4.7	22
161	Superparticle mass spectra from SO(10) grand unified models with Yukawa coupling unification. Physical Review D, 2000, 61 , .	4.7	73
162	Reach of the CERN Large Hadron Collider for gauge-mediated supersymmetry breaking models. Physical Review D, 2000, 62, .	4.7	27

#	Article	IF	Citations
163	Reach of Fermilab Tevatron upgrades for SU(5) supergravity models with nonuniversal gaugino masses. Physical Review D, 2000, 61 , .	4.7	70
164	Reach of Fermilab Tevatron upgrades in gauge-mediated supersymmetry breaking models. Physical Review D, 1999, 60, .	4.7	27
165	Probing minimal supergravity at the CERN LHC for largetanl ² . Physical Review D, 1999, 59, .	4.7	112
166	b→sγconstraints on the minimal supergravity model with largetanβ. Physical Review D, 1998, 58, .	4.7	124
167	Neutralino dark matter in minimal supergravity: Direct detection versus collider searches. Physical Review D, 1998, 57, 567-577.	4.7	212
168	Supersymmetry reach of Fermilab Tevatron upgrades: The largetanl²case. Physical Review D, 1998, 58, .	4.7	75
169	SUPERSYMMETRIC EVENT GENERATION AND THE REACH OF COLLIDERS FOR SUPERSYMMETRY. Advanced Series on Directions in High Energy Physics, 1998, , 256-275.	0.7	0
170	QCD-improvedb→sγconstraints on the minimal supergravity model. Physical Review D, 1997, 55, 3201-3208.	4.7	88
171	Collider Phenomenology for Supersymmetry with Largetanl². Physical Review Letters, 1997, 79, 986-989.	7.8	93
172	Signals for the minimal gauge-mediated supersymmetry-breaking model at the Fermilab Tevatron collider. Physical Review D, 1997, 55, 4463-4474.	4.7	90
173	Constraints on the minimal supergravity model from nonstandard vacua. Physical Review D, 1996, 54, 6944-6956.	4.7	43
174	Signals for minimal supergravity at the CERN Large Hadron Collider. II. Multilepton channels. Physical Review D, 1996, 53, 6241-6264.	4.7	191
175	Cosmological relic density from minimal supergravity with implications for collider physics. Physical Review D, 1996, 53, 597-605.	4.7	230
176	Supersymmetry studies at future lineare+eâ^'colliders. Physical Review D, 1996, 54, 6735-6755.	4.7	40
177	Simultaneous search for two Higgs bosons of minimal supersymmetry at the CERN LHC. Physical Review D, 1996, 54, 6728-6734.	4.7	8
178	Multichannel search for minimal supergravity atpp \hat{A} -ande+e \hat{a} -'colliders. Physical Review D, 1995, 51, 1046-1050.	4.7	53
179	Signals for minimal supergravity at the CERN Large Hadron Collider: Multijet plus missing energy channel. Physical Review D, 1995, 52, 2746-2759.	4.7	177
180	Search for top squarks at the Fermilab Tevatron collider. Physical Review D, 1994, 50, 4517-4528.	4.7	50

#	Article	IF	CITATIONS
181	Detecting Higgs boson decays to neutralinos at hadron supercolliders. Physical Review D, 1994, 50, 316-324.	4.7	33
182	Trileptons from chargino-neutralino production at the CERN Large Hadron Collider. Physical Review D, 1994, 50, 4508-4516.	4.7	103
183	Aspects of chargino-neutralino production at the Fermilab Tevatron collider. Physical Review D, 1993, 48, 5175-5180.	4.7	81
184	Probing charginos and neutralinos beyond the reach of the CERNe+eâ^'collider LEP at the Fermilab Tevatron collider. Physical Review D, 1993, 47, 2739-2745.	4.7	105
185	Search for Higgs bosons of minimal supersymmetry: Impact of supersymmetric decay modes. Physical Review D, 1993, 47, 1062-1079.	4.7	58
186	Multilepton signals from supersymmetry at hadron supercolliders. Physical Review D, 1992, 45, 142-160.	4.7	86
187	Supercollider signals from gluino and squark decays to Higgs bosons. Physical Review D, 1992, 46, 303-314.	4.7	47
188	Phenomenology of light top squarks at the Fermilab Tevatron. Physical Review D, 1991, 44, 725-740.	4.7	70
189	Z0+jets+pTevents as a signal for supersymmetry at the Fermilab Tevatron collider. Physical Review D, 1990, 42, 1450-1454.	4.7	16
190	Phenomenology of gluino decays via loops and top-quark Yukawa coupling. Physical Review D, 1990, 42, 1568-1576.	4.7	71
191	Gluino-cascade-decay signatures at the Fermilab Tevatron collider. Physical Review D, 1990, 41, 906-915.	4.7	56
192	SEARCHING FOR SUPERSYMMETRY AT e+eâ^' SUPERCOLLIDERS. International Journal of Modern Physics A, 1989, 04, 4111-4163.	1.5	60
193	GLUINO DECAYS TO W AND Z BOSONS AT THE SSC. International Journal of Modern Physics A, 1987, 02, 1131-1144.	1.5	13
194	Gauginos as a signal for supersymmetry atppÂ ⁻ colliders. Physical Review D, 1987, 35, 1598-1625.	4.7	107
195	Higgs-boson signals in superstring-inspired models at hadron supercolliders. Physical Review D, 1987, 36, 1363-1377.	4.7	58
196	Detecting gluinos at hadron supercolliders. Physical Review D, 1987, 36, 96-108.	4.7	125
197	Implications of the t-quark signal for stop squarks and charged Higgs bosons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 167, 241-247.	4.1	26
198	Can the Data from the CERNppÂ ⁻ Collider Limit Gaugino Masses?. Physical Review Letters, 1986, 57, 294-297.	7.8	52

#	Article	IF	CITATIONS
199	Multilepton signals from W± and Z0 decays to gauginos at p colliders. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 155, 278-283.	4.1	40