

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/274502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Irradiation role on meat quality induced dynamic molecular transformation: From nutrition to texture. Food Reviews International, 2023, 39, 4442-4464.	8.4	11
2	A Comprehensive Review on the Development of Foodomics-Based Approaches to Evaluate the Quality Degradation of Different Food Products. Food Reviews International, 2023, 39, 5563-5582.	8.4	2
3	An analytical strategy for discovering structural analogues of alkaloids in plant food using characteristic structural fragments extraction by high resolution orbitrap mass spectrometry. LWT - Food Science and Technology, 2022, 154, 112329.	5.2	4
4	UHPLC-Q-Orbitrap-based lipidomics reveals molecular mechanism of lipid changes during preservatives treatment of Hengshan goat meat sausages. Food Chemistry, 2022, 369, 130948.	8.2	53
5	Molecular mechanism associated with the use of magnetic fermentation in modulating the dietary lipid composition and nutritional quality of goat milk. Food Chemistry, 2022, 366, 130554.	8.2	47
6	Proteomics analysis to investigate the impact of diversified thermal processing on meat tenderness in Hengshan goat meat. Meat Science, 2022, 183, 108655.	5.5	51
7	Molecular mechanisms of the irradiation-induced accumulation of polyphenols in star anise (Illicium) Tj ETQq1 1 C).784314 i 3.9	gBT /Overloc
8	Monitoring contamination of perchlorate migrating along the food chain to dairy products poses risks to human health. Food Chemistry, 2022, 374, 131633.	8.2	27
9	An advanced strategy for efficient recycling of bovine bone: Preparing high-valued bone powder via instant catapult steam-explosion. Food Chemistry, 2022, 374, 131614.	8.2	14
10	Characterisation of key odorants causing honey aroma in Feng-flavour Baijiu during the 17-year ageing process by multivariate analysis combined with foodomics. Food Chemistry, 2022, 374, 131764.	8.2	27
11	Physicochemical and molecular transformation of novel functional peptides from Baijiu. Food Chemistry, 2022, 375, 131894.	8.2	15
12	Novel strategy to remove the odor in goat milk: Dynamic discovey magnetic field treatment to reduce the loss of phosphatidylcholine in flash vacuum from the proteomics perspective. Food Chemistry, 2022, 375, 131889.	8.2	11
13	Molecular mechanism of high pressure shear grinding on Feng-flavour Chinese Baijiu ageing. Food Research International, 2022, 153, 110957.	6.2	5
14	Molecular mechanism of Mare Nectaris and magnetic field on the formation of ethyl carbamate during 19Âyears aging of Feng-flavor Baijiu. Food Chemistry, 2022, 382, 132357.	8.2	7
15	Ethyl carbamate regulate esters degradation by activating hydrolysis during Baijiu ripening. Food Research International, 2022, 156, 111157.	6.2	8
16	Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Research International, 2022, 157, 111206.	6.2	12
17	Bioaccessibility of phospholipids in homogenized goat milk: Lipid digestion ecology through INFOGEST model. Food Chemistry, 2022, 386, 132770.	8.2	9
18	High-spatial-resolution multi-spectroscopic provides insights into the interaction and release of δ-decanolactone and decanoic acid with β-lactoglobulin. Food Hydrocolloids, 2022, , 107787.	10.7	4

#	Article	IF	CITATIONS
19	Strategies for studying in vivo biochemical formation pathways and multilevel distributions of sulfanilamide metabolites in food (2012–2022). Food Chemistry, 2022, 388, 133039.	8.2	5
20	Novel insight into the transformation of peptides and potential benefits in brown fermented goat milk by mesoporous magnetic dispersive solid phase extraction-based peptidomics. Food Chemistry, 2022, 389, 133110.	8.2	16
21	Authenticity and traceability of goat milk: Molecular mechanism of β-carotene biotransformation and accessibility. Food Chemistry, 2022, 388, 133073.	8.2	6
22	Novel top-down high-resolution mass spectrometry-based metabolomics and lipidomics reveal molecular change mechanism in A2 milk after CSN2 gene mutation. Food Chemistry, 2022, 391, 133270.	8.2	4
23	Discovery of Se-containing flavone in Se-enriched green tea and the potential application value in the immune regulation. Food Chemistry, 2022, 394, 133468.	8.2	11
24	Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. LWT - Food Science and Technology, 2022, 165, 113717.	5.2	5
25	Pseudo-targeted metabolomics analysis of the therapeutic effect of phenolics-rich extract from Se-enriched green tea (Camellia sinensis) on LPS-stimulated murine macrophage (RAW264.7). Food Research International, 2022, 159, 111666.	6.2	10
26	Hydrogen bonds and hydrophobicity with mucin and α-amylase induced honey aroma in Feng-flavor Baijiu during 16Âyears aging. Food Chemistry, 2022, 396, 133679.	8.2	10
27	Valorization of Yak (Bos grunniens) Bones as Sources of Functional Ingredients. Waste and Biomass Valorization, 2021, 12, 1553-1564.	3.4	10
28	Unraveling proteome changes of irradiated goat meat and its relationship to off-flavor analyzed by high-throughput proteomics analysis. Food Chemistry, 2021, 337, 127806.	8.2	53
29	Molecular mechanism of the role of Mare Nectaris in the Feng-Flavor Baijiu aging. LWT - Food Science and Technology, 2021, 135, 110254.	5.2	19
30	Characterization of an intracellular aspartic protease (PsAPA) from Penicillium sp. XT7 and its application in collagen extraction. Food Chemistry, 2021, 345, 128834.	8.2	11
31	Hypoglycemic effects of <i>Auricularia auricula</i> polysaccharides on high fat diet and streptozotocin-induced diabetic mice using metabolomics analysis. Food and Function, 2021, 12, 9994-10007.	4.6	13
32	High-Coverage Screening of Sulfonamide Metabolites in Goat Milk by Magnetic Doped S Graphene Combined with Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2021, 69, 4755-4765.	5.2	13
33	Molecular mechanism of protein dynamic change for Hengshan goat meat during freezing storage based on high-throughput proteomics. Food Research International, 2021, 143, 110289.	6.2	22
34	A High-Throughput Comparative Proteomics of Milk Fat Globule Membrane Reveals Breed and Lactation Stages Specific Variation in Protein Abundance and Functional Differences Between Milk of Saanen Dairy Goat and Holstein Bovine. Frontiers in Nutrition, 2021, 8, 680683.	3.7	6
35	Molecular mechanism of lipid transformation in cold chain storage of Tan sheep. Food Chemistry, 2021, 347, 129007.	8.2	24
36	Accurate Quantification of Sulfonamide Metabolites in Goat Meat: A New Strategy for Minimizing Interaction between Sheep Serum Albumin and Sulfonamide Metabolites. Journal of Agricultural and Food Chemistry, 2021, 69, 6556-6568.	5.2	6

#	Article	IF	CITATIONS
37	Physicochemical properties, digestibility and anti-osteoporosis effect of yak bone powder with different particle sizes. Food Research International, 2021, 145, 110401.	6.2	9
38	Effect of irradiation treatment on the lipid composition and nutritional quality of goat meat. Food Chemistry, 2021, 351, 129295.	8.2	38
39	LC-Q-Orbitrap HRMS-based proteomics reveals potential nutritional function of goat whey fraction. Journal of Functional Foods, 2021, 82, 104502.	3.4	7
40	An untargeted metabolomics approach to identify markers to distinguish duck eggs that come from different poultry breeding systems by ultra high performance liquid chromatography-high resolution mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122820.	2.3	3
41	LC-MS-based metabolomics reveals metabolite dynamic changes during irradiation of goat meat. Food Research International, 2021, 150, 110721.	6.2	30
42	UHPLC-Q-Orbitrap HRMS-based quantitative lipidomics reveals the chemical changes of phospholipids during thermal processing methods of Tan sheep meat. Food Chemistry, 2021, 360, 130153.	8.2	39
43	Untargeted foodomics reveals molecular mechanism of magnetic field effect on Feng-flavor Baijiu ageing. Food Research International, 2021, 149, 110681.	6.2	16
44	Effect of nisin and potassium sorbate additions on lipids and nutritional quality of Tan sheep meat. Food Chemistry, 2021, 365, 130535.	8.2	24
45	Integrated metabolomics and lipidomics profiling reveals beneficial changes in sensory quality of brown fermented goat milk. Food Chemistry, 2021, 364, 130378.	8.2	25
46	Multilaboratory Collaborative Study of a Nontarget Data Acquisition for Target Analysis (nDATA) Workflow Using Liquid Chromatography-High-Resolution Accurate Mass Spectrometry for Pesticide Screening in Fruits and Vegetables. Journal of Agricultural and Food Chemistry, 2021, 69, 13200-13216.	5.2	11
47	Time-Series Lipidomics Insights into the Progressive Characteristics of Lipid Constituents of Fresh Walnut during Postharvest Storage. Journal of Agricultural and Food Chemistry, 2021, 69, 13796-13809.	5.2	10
48	Liquefaction of porcine hoof shell to prepare peptone substitute by instant catapult steam explosion. Journal of Bioscience and Bioengineering, 2020, 129, 467-475.	2.2	5
49	Composition of chemical elements in the edible viscera of Tibetan pigs and its correlation with environment and feed. Food Research International, 2020, 129, 108832.	6.2	6
50	Extraction, isolation, characterisation, antioxidant and antiâ€fatigue activities of <i>Pleurotus eryngii</i> polysaccharides. International Journal of Food Science and Technology, 2020, 55, 2492-2508.	2.7	18
51	A strategy for the determination of flavor substances in goat milk by liquid chromatography-high resolution mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1152, 122274.	2.3	11
52	Investigation of Differentially Expressed Proteins Induced by Alteration of Natural Se Uptake with Ultrahigh-Performance Liquid Chromatography Quadrupole Orbitrap Uncovers the Potential Nutritional Value in Se-Enriched Green Tea. Journal of Agricultural and Food Chemistry, 2020, 68, 6316-6332.	5.2	6
53	Discrimination of Milk from Different Animal Species by a Foodomics Approach Based on High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 6638-6645.	5.2	51
54	Cover Image, Volume 100, Issue 6. Journal of the Science of Food and Agriculture, 2020, 100, i.	3.5	0

#	Article	IF	CITATIONS
55	Yak (Bos grunniens) bones collagenâ€derived peptides stimulate osteoblastic proliferation and differentiation via the activation of Wnt/βâ€catenin signaling pathway. Journal of the Science of Food and Agriculture, 2020, 100, 2600-2609.	3.5	20
56	A strategy of untargeted foodomics profiling for dynamic changes during Fu brick tea fermentation using ultrahigh-performance liquid chromatography-high resolution mass spectrometry. Journal of Chromatography A, 2020, 1618, 460900.	3.7	15
57	Foodomics analysis of natural aging and gamma irradiation maturation in Chinese distilled Baijiu by UPLC-Orbitrap-MS/MS. Food Chemistry, 2020, 315, 126308.	8.2	55
58	Optimization of extraction parameters of <i>Pleurotus eryngii</i> polysaccharides and evaluation of the hypolipidemic effect. RSC Advances, 2020, 10, 11918-11928.	3.6	9
59	Recent advances in Baijiu analysis by chromatography based technology–A review. Food Chemistry, 2020, 324, 126899.	8.2	68
60	Effects of spices on the formation of biogenic amines during the fermentation of dry fermented mutton sausage. Food Chemistry, 2020, 321, 126723.	8.2	64
61	Accurate determination of volatile-flavor components in bos grunniens milk by high-throughput dynamic headspace gas chromatographic-mass spectrometry. Journal of Chromatography A, 2019, 1603, 67-82.	3.7	14
62	High-throughput mass spectrometry scheme for screening and quantification of flavonoids in antioxidant nutraceuticals. Journal of Chromatography A, 2019, 1608, 460408.	3.7	10
63	High-throughput screening of the nucleosides and nucleotides using characteristic structural fragments fusion. Journal of Pharmaceutical and Biomedical Analysis, 2019, 175, 112787.	2.8	5
64	Co-production of chondroitin sulfate and peptide from liquefied chicken sternal cartilage by hot-pressure. Carbohydrate Polymers, 2019, 222, 115015.	10.2	19
65	Preparation, identification and molecular docking study of novel osteoblast proliferation-promoting peptides from yak (<i>Bos grunniens</i>) bones. RSC Advances, 2019, 9, 14627-14637.	3.6	31
66	Liquefaction of chicken sternal cartilage by steam explosion to isolate chondroitin sulfate. Carbohydrate Polymers, 2019, 215, 73-81.	10.2	17
67	Chicken leg bone as a source of chondroitin sulfate. Carbohydrate Polymers, 2019, 207, 191-199.	10.2	17
68	Multiplexing data independent untargeted workflows for mycotoxins screening on a quadrupole-Orbitrap high resolution mass spectrometry platform. Food Chemistry, 2019, 278, 67-76.	8.2	19
69	High-throughput foodomics strategy for screening flavor components in dairy products using multiple mass spectrometry. Food Chemistry, 2019, 279, 1-11.	8.2	13
70	Characterization and discrimination of Taihe black-boned silky fowl (Gallus gallus domesticus) Tj ETQq0 0 0 rgB	[/Qverlock	≥ 10 Tf 50 14

71	Dissociation mechanisms-based UHPLC Q-Orbitrap strategy for screening of cephalosporins and metabolites in shrimp. Food Chemistry, 2018, 250, 30-36.	8.2	7
72	A strategy for untargeted screening of macrolides and metabolites in bass by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Food Chemistry, 2018, 262, 110-117.	8.2	22

#	Article	IF	CITATIONS
73	Untargeted screening of sulfonamides and their metabolites in salmon using liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Chemistry, 2018, 239, 427-433.	8.2	36
74	High-throughput untargeted screening of veterinary drug residues and metabolites in tilapia using high resolution orbitrap mass spectrometry. Analytica Chimica Acta, 2017, 957, 29-39.	5.4	55
75	Preparation of peptone from chicken bone residue by using natural pancreas as catalyst. Journal of Chemical Technology and Biotechnology, 2016, 91, 2852-2861.	3.2	7
76	High-throughput screening of vitamins and natural antioxidants in nutraceuticals from green tea extracts by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Journal of Chromatography A, 2015, 1406, 337-341.	3.7	9
77	Multiresidue pesticide analysis in nutraceuticals from green tea extracts by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Journal of Chromatography A, 2015, 1395, 160-166.	3.7	27
78	Analysis of phthalates in milk and milk products by liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry. Journal of Chromatography A, 2014, 1362, 110-118.	3.7	48
79	Simultaneous determination of dyes in wines by <scp>HPLC</scp> coupled to quadrupole orbitrap mass spectrometry. Journal of Separation Science, 2014, 37, 782-791.	2.5	35
80	Analysis of additives in dairy products by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry. Journal of Chromatography A, 2014, 1336, 67-75.	3.7	28
81	Multi-mycotoxin analysis in dairy products by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Journal of Chromatography A, 2014, 1345, 107-114.	3.7	62
82	High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Journal of Chromatography A, 2014, 1347, 122-128.	3.7	85