Mark C Horowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2742474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength. Nature Communications, 2021, 12, 3408.	12.8	31
2	The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight, 2021, 6, .	5.0	29
3	Human Heterozygous ENPP1 Deficiency Is Associated With Early Onset Osteoporosis, a Phenotype Recapitulated in a Mouse Model of Enpp1 Deficiency. Journal of Bone and Mineral Research, 2020, 35, 528-539.	2.8	40
4	Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 2020, 11, 65.	3.5	53
5	Response of the ENPP1-Deficient Skeletal Phenotype to Oral Phosphate Supplementation and/or Enzyme Replacement Therapy: Comparative Studies in Humans and Mice. Journal of Bone and Mineral Research, 2020, 36, 942-955.	2.8	15
6	Bone Marrow Adiposity: Basic and Clinical Implications. Endocrine Reviews, 2019, 40, 1187-1206.	20.1	69
7	Impaired ATM activation in B cells is associated with bone resorption in rheumatoid arthritis. Science Translational Medicine, 2019, 11, .	12.4	15
8	Fat and Bone: PGC-1α Regulates Mesenchymal Cell Fate during Aging and Osteoporosis. Cell Stem Cell, 2018, 23, 151-153.	11.1	11
9	Methionineâ€Restricted Diet Increases miRNAs That Can Target RUNX2 Expression and Alters Bone Structure in Young Mice. Journal of Cellular Biochemistry, 2017, 118, 31-42.	2.6	28
10	Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Systems, 2017, 4, 46-59.e4.	6.2	124
11	Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metabolism, 2017, 25, 661-672.	16.2	308
12	Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype. Journal of Cellular Biochemistry, 2017, 118, 2231-2240.	2.6	9
13	Bone marrow adipocytes. Adipocyte, 2017, 6, 193-204.	2.8	151
14	Câ€Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. Journal of Cellular Biochemistry, 2016, 117, 959-969.	2.6	17
15	FGFR2c-mediated ERK–MAPK activity regulates coronal suture development. Developmental Biology, 2016, 415, 242-250.	2.0	35
16	Marrow Adipose Tissue: Trimming the Fat. Trends in Endocrinology and Metabolism, 2016, 27, 392-403.	7.1	171
17	Fat Decisions: Leptin Regulates Bone versus Fat in the Marrow. Cell Stem Cell, 2016, 18, 684-686.	11.1	6
18	A Novel Role for Thrombopoietin in Regulating Osteoclast Development in Humans and Mice. Journal of Cellular Physiology, 2015, 230, 2142-2151.	4.1	13

#	Article	IF	CITATIONS
19	A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice. Journal of Cellular Physiology, 2015, 230, 2032-2037.	4.1	137

Adipose Tissue-Residing Progenitors (Adipocyte Lineage Progenitors and Adipose-Derived Stem Cells) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

21	Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. Journal of Experimental Medicine, 2015, 212, 1931-1946.	8.5	51
22	Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney International, 2014, 85, 1091-1102.	5.2	24
23	Use of Osmium Tetroxide Staining with Microcomputerized Tomography to Visualize and Quantify Bone Marrow Adipose Tissue In Vivo. Methods in Enzymology, 2014, 537, 123-139.	1.0	136
24	Bone Marrow Adipose Tissue Is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metabolism, 2014, 20, 368-375.	16.2	415
25	Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone, 2014, 64, 39-46.	2.9	124
26	Early B Cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue. Cell Metabolism, 2014, 19, 981-992.	16.2	90
27	Sclerostin: A new mediator of crosstalk between the skeletal and immune systems. Journal of Bone and Mineral Research, 2012, 27, 1448-1450.	2.8	10
28	How B cells influence bone biology in health and disease. Bone, 2010, 47, 472-479.	2.9	80
29	B Lymphocytes and the Skeleton. Annals of the New York Academy of Sciences, 2007, 1117, 82-93.	3.8	11
30	Immunologic Regulation of Bone Development. Advances in Experimental Medicine and Biology, 2007, 602, 47-56.	1.6	11
31	Megakaryocyte-mediated inhibition of osteoclast development. Bone, 2006, 39, 991-999.	2.9	78
32	A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone, 2006, 39, 978-984.	2.9	102
33	B cells and osteoblast and osteoclast development. Immunological Reviews, 2005, 208, 141-153.	6.0	61
34	The origins of osteoclasts. Current Opinion in Rheumatology, 2004, 16, 464-468.	4.3	52
35	Pax5-Deficient Mice Exhibit Early Onset Osteopenia with Increased Osteoclast Progenitors. Journal of Immunology, 2004, 173, 6583-6591.	0.8	57
36	Parathyroid hormone induces hepatic production of bioactive interleukin-6 and its soluble receptor.	3.5	68

MARK C HOROWITZ

#	ARTICLE	IF	CITATIONS
37	Thy-1 Antigen Expression by Cells in the Osteoblast Lineage. Journal of Bone and Mineral Research, 1999, 14, 362-375.	2.8	72
38	Murine neurofibroma reversion by antisense RNA for HTLV-I tax. Science in China Series C: Life Sciences, 1999, 42, 8-16.	1.3	0
39	Tumor necrosis factor-α induces transcription of the colony-stimulating factor-1 gene in murine osteoblasts. Journal of Cellular Physiology, 1996, 168, 199-208.	4.1	31
40	The expression of cytokine activity by fracture callus. Journal of Bone and Mineral Research, 1995, 10, 1272-1281.	2.8	235
41	Cytokines and estrogen in bone: anti-osteoporotic effects. Science, 1993, 260, 626-627.	12.6	427
42	Regulation of cytokine expression in osteoblasts by parathyroid hormone: Rapid stimulation of interleukin-6 and leukemia inhibitory factor mRNA. Journal of Bone and Mineral Research, 1993, 8, 1163-1171.	2.8	121
43	Macrophage colony-stimulating factor release and receptor expression in bone cells. Journal of Bone and Mineral Research, 1993, 8, 1507-1518.	2.8	96
44	Osteotropic agents induce the differential secretion of granulocyte-macrophage colony-stimulating factor by the osteoblast cell line MC3T3-E1. Journal of Bone and Mineral Research, 1989, 4, 911-921.	2.8	38