Frederic Saltel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2741965/publications.pdf

Version: 2024-02-01

63 papers

4,558 citations

33 h-index 62 g-index

67 all docs

67
docs citations

times ranked

67

6096 citing authors

#	Article	IF	CITATIONS
1	Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone, 2008, 42, 129-138.	2.9	705
2	Podosomes Display Actin Turnover and Dynamic Self-Organization in Osteoclasts Expressing Actin-Green Fluorescent Protein. Molecular Biology of the Cell, 2003, 14, 407-416.	2.1	400
3	The mechanisms and dynamics of $\hat{l}\pm v\hat{l}^2$ 3 integrin clustering in living cells. Journal of Cell Biology, 2005, 171, 383-392.	5.2	315
4	Podosome and sealing zone: Specificity of the osteoclast model. European Journal of Cell Biology, 2006, 85, 195-202.	3.6	314
5	Apatite-mediated Actin Dynamics in Resorbing Osteoclasts. Molecular Biology of the Cell, 2004, 15, 5231-5241.	2.1	248
6	A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. Journal of Cell Science, 2005, 118, 2901-2911.	2.0	210
7	New PI(4,5)P2- and membrane proximal integrin–binding motifs in the talin head control β3-integrin clustering. Journal of Cell Biology, 2009, 187, 715-731.	5.2	153
8	Actin cytoskeletal organisation in osteoclasts: A model to decipher transmigration and matrix degradation. European Journal of Cell Biology, 2008, 87, 459-468.	3.6	143
9	CD44 and \hat{I}^2 3 Integrin Organize Two Functionally Distinct Actin-based Domains in Osteoclasts. Molecular Biology of the Cell, 2007, 18, 4899-4910.	2.1	135
10	Posttranscriptional Regulation of <i>PER1</i> Underlies the Oncogenic Function of IREα. Cancer Research, 2013, 73, 4732-4743.	0.9	115
11	Organelle Specific O-Glycosylation Drives MMP14 Activation, Tumor Growth, and Metastasis. Cancer Cell, 2017, 32, 639-653.e6.	16.8	102
12	Autocrine control of glioma cells adhesion/migration through Inositol Requiring enzyme $1\hat{l}\pm$ (IRE1 $\hat{l}\pm$)-mediated cleavage of Secreted Protein Acidic Rich in Cysteine (SPARC) mRNA. Journal of Cell Science, 2012, 125, 4278-87.	2.0	96
13	TGFÎ ² -induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. Journal of Cell Science, 2009, 122, 4311-4318.	2.0	92
14	Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42–Tuba pathway. Journal of Cell Biology, 2014, 207, 517-533.	5.2	92
15	Invadosomes: Intriguing structures with promise. European Journal of Cell Biology, 2011, 90, 100-107.	3.6	90
16	Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Molecular Biology of the Cell, 2012, 23, 297-309.	2.1	84
17	Expression and function of semaphorin 7A in bone cells. Biology of the Cell, 2005, 97, 589-597.	2.0	82
18	Argininosuccinate synthase 1 (ASS1): A marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatology, 2017, 66, 2016-2028.	7.3	75

#	Article	IF	CITATIONS
19	Cathepsin-Dependent Apoptosis Triggered by Supraoptimal Activation of T Lymphocytes: A Possible Mechanism of High Dose Tolerance. Journal of Immunology, 2004, 172, 5405-5414.	0.8	65
20	Rnd3 in Cancer: A Review of the Evidence for Tumor Promoter or Suppressor. Molecular Cancer Research, 2016, 14, 1033-1044.	3.4	64
21	Cathepsin-B-dependent apoptosis triggered by antithymocyte globulins: a novel mechanism of T-cell depletion. Blood, 2003, 102, 3719-3726.	1.4	62
22	The Endoplasmic Reticulum Is a Key Component of the Plasma Cell Death Pathway. Journal of Immunology, 2006, 176, 1340-1347.	0.8	55
23	Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biology of the Cell, 2013, 105, 46-57.	2.0	53
24	The microenvironment controls invadosome plasticity. Journal of Cell Science, 2016, 129, 1759-68.	2.0	53
25	Cell Surface Delivery of the Measles Virus Nucleoprotein: a Viral Strategy To Induce Immunosuppression. Journal of Virology, 2004, 78, 11952-11961.	3.4	50
26	Cutting Edge: Immediate RANTES Secretion by Resting Memory CD8 T Cells Following Antigenic Stimulation. Journal of Immunology, 2003, 170, 1615-1619.	0.8	48
27	Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nature Communications, 2018, 9, 2031.	12.8	43
28	IÂB kinase phosphorylates Dok1 serines in response to TNF, IL-1, or radiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17416-17421.	7.1	42
29	TGF- \hat{l}^21 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking. European Journal of Cell Biology, 2016, 95, 503-512.	3.6	41
30	Cdc42 and Tks5. Cell Adhesion and Migration, 2014, 8, 280-292.	2.7	39
31	PD-L1 and PD-L2 Are Differentially Expressed by Macrophages or Tumor Cells in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type. American Journal of Surgical Pathology, 2018, 42, 326-334.	3.7	38
32	Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adhesion and Migration, 2018, 12, 1-15.	2.7	35
33	Transmigration: A New Property of Mature Multinucleated Osteoclasts. Journal of Bone and Mineral Research, 2006, 21, 1913-1923.	2.8	34
34	ASS1 Overexpression: A Hallmark of Sonic Hedgehog Hepatocellular Adenomas; Recommendations for Clinical Practice. Hepatology Communications, 2020, 4, 809-824.	4.3	33
35	Involvement of the orphan nuclear estrogen receptor-related receptor \hat{l}_{\pm} in osteoclast adhesion and transmigration. Journal of Molecular Endocrinology, 2010, 45, 365-377.	2.5	29
36	DDR1 and MT1-MMP Expression Levels Are Determinant for Triggering BIK-Mediated Apoptosis by 3D Type I Collagen Matrix in Invasive Basal-Like Breast Carcinoma Cells. Frontiers in Pharmacology, 2019, 10, 462.	3. 5	29

#	Article	IF	CITATIONS
37	A Complex and Evolutive Character: Two Face Aspects of ECM in Tumor Progression. Frontiers in Oncology, 2020, 10, 1620.	2.8	26
38	Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. Journal of Cell Biology, 2016, 214, 859-873.	5.2	25
39	ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells. Nature Cell Biology, 2020, 22, 1371-1381.	10.3	24
40	A Nuclear Export Signal and Phosphorylation Regulate Dok1 Subcellular Localization and Functions. Molecular and Cellular Biology, 2006, 26, 4288-4301.	2.3	23
41	Regulatory signals for endothelial podosome formation. European Journal of Cell Biology, 2008, 87, 543-554.	3 . 6	21
42	DDR1 and DDR2 physical interaction leads to signaling interconnection but with possible distinct functions. Cell Adhesion and Migration, 2018, 12, 1-11.	2.7	21
43	Actin Depolymerization in Dedifferentiated Liver Sinusoidal Endothelial Cells Promotes Fenestrae Reâ€Formation. Hepatology Communications, 2019, 3, 213-219.	4.3	18
44	Unr defines a novel class of nucleoplasmic reticulum, involved in mRNA translation. Journal of Cell Science, 2017, 130, 1796-1808.	2.0	16
45	2D and 3D Matrices to Study Linear Invadosome Formation and Activity. Journal of Visualized Experiments, 2017, , .	0.3	12
46	Linking Matrix Rigidity with EMT and Cancer Invasion. Developmental Cell, 2020, 54, 293-295.	7.0	12
47	The invasive proteome of glioblastoma revealed by laser-capture microdissection. Neuro-Oncology Advances, 2019, 1, vdz029.	0.7	9
48	Antigenic Mimicry in Paraneoplastic Immune Thrombocytopenia. Frontiers in Immunology, 2019, 10, 523.	4.8	9
49	Rnd3/RhoE expression is regulated by G-actin through MKL1-SRF signaling pathway. Experimental Cell Research, 2018, 370, 227-236.	2.6	8
50	Meeting report – first discoidin domain receptors meeting. Journal of Cell Science, 2020, 133, .	2.0	8
51	The Proteome of Antibody-Mediated Rejection: From Glomerulitis to Transplant Glomerulopathy. Biomedicines, 2022, 10, 569.	3.2	8
52	STED microscopy: A simplified method for liver sinusoidal endothelial <i>fenestrae</i> analysis. Biology of the Cell, 2018, 110, 159-168.	2.0	7
53	Proteomic Profiling of Hepatocellular Adenomas Paves the Way to Diagnostic and Prognostic Approaches. Hepatology, 2021, 74, 1595-1610.	7.3	7
54	Type I collagen fibrils: an inducer of invadosomes. Oncotarget, 2015, 6, 28519-28520.	1.8	7

#	Article	IF	CITATIONS
55	Discoidin Domain Receptor 2 orchestrates melanoma resistance combining phenotype switching and proliferation. Oncogene, 2022, 41, 2571-2586.	5.9	6
56	Urokinase Receptor (CD87) Clustering in Detergent-Insoluble Adhesion Patches Leads to Cell Adhesion Independently of Integrins. Cell Communication and Adhesion, 2007, 14, 137-155.	1.0	5
57	Type I collagen fibrils and discoidin domain receptor $\bf 1$ set invadosomes straight. Molecular and Cellular Oncology, $\bf 2015, 2, e1004963.$	0.7	5
58	Reptin/RUVBL2 is required for hepatocyte proliferation in vivo, liver regeneration and homeostasis. Liver International, 2021, 41, 1423-1429.	3.9	4
59	Hepatocyte proteomes reveal the role of protein disulfide isomerase 4 in alpha 1-antitrypsin deficiency. JHEP Reports, 2021, 3, 100297.	4.9	4
60	Discoidin domain receptors: multitaskers for physiological and pathological processes. Cell Adhesion and Migration, 2018, 12, 1-2.	2.7	3
61	Collagen and Discoidin Domain Receptor 1 Partnership: A Multifaceted Role in the Regulation of Breast Carcinoma Cell Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 808625.	3.7	3
62	Invadosomes in real life. Cell Adhesion and Migration, 2014, 8, 177-178.	2.7	1
63	Meeting report – Imaging the Cell. Journal of Cell Science, 2015, 128, 3843-3847.	2.0	O