
## Ethel White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2741422/publications.pdf Version: 2024-02-01



**Ετμει \λ/μιτε** 

| #  | Article                                                                                                                                                                        | IF                | CITATIONS              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|
| 1  | Variation in Arsenic Speciation and Concentration in Paddy Rice Related to Dietary Exposure.<br>Environmental Science & Technology, 2005, 39, 5531-5540.                       | 4.6               | 706                    |
| 2  | Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice.<br>Environmental Science & Technology, 2009, 43, 1612-1617.                            | 4.6               | 673                    |
| 3  | Greatly Enhanced Arsenic Shoot Assimilation in Rice Leads to Elevated Grain Levels Compared to Wheat and Barley. Environmental Science & Technology, 2007, 41, 6854-6859.      | 4.6               | 653                    |
| 4  | Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation.<br>Trends in Plant Science, 2009, 14, 436-442.                                  | 4.3               | 486                    |
| 5  | Increase in Rice Grain Arsenic for Regions of Bangladesh Irrigating Paddies with Elevated Arsenic in<br>Groundwaters. Environmental Science & Technology, 2006, 40, 4903-4908. | 4.6               | 473                    |
| 6  | Occurrence and Partitioning of Cadmium, Arsenic and Lead in Mine Impacted Paddy Rice: Hunan, China.<br>Environmental Science & Technology, 2009, 43, 637-642.                  | 4.6               | 451                    |
| 7  | High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice.<br>Environmental Science & Technology, 2008, 42, 5008-5013.                         | 4.6               | 390                    |
| 8  | Arsenic Sequestration in Iron Plaque, Its Accumulation and Speciation in Mature Rice Plants (Oryza) Tj ETQq0 0                                                                 | 0 rgBT /0\<br>4.6 | erl <u>ggk</u> 10 Tf 5 |
| 9  | Variation in Rice Cadmium Related to Human Exposure. Environmental Science & Technology, 2013,<br>47, 5613-5618.                                                               | 4.6               | 365                    |
| 10 | Exposure to inorganic arsenic from rice: A global health issue?. Environmental Pollution, 2008, 154, 169-171.                                                                  | 3.7               | 344                    |

|    | 109 17 1.                                                                                                                                                                                                              |     |     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 11 | Inorganic arsenic in Chinese food and its cancer risk. Environment International, 2011, 37, 1219-1225.                                                                                                                 | 4.8 | 328 |
| 12 | Speciation and Localization of Arsenic in White and Brown Rice Grains. Environmental Science &<br>Technology, 2008, 42, 1051-1057.                                                                                     | 4.6 | 321 |
| 13 | Inorganic Arsenic in Rice Bran and Its Products Are an Order of Magnitude Higher than in Bulk Grain.<br>Environmental Science & Technology, 2008, 42, 7542-7546.                                                       | 4.6 | 278 |
| 14 | Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry, 2007, 4, 197.                                                                                                 | 0.7 | 257 |
| 15 | Market Basket Survey Shows Elevated Levels of As in South Central U.S. Processed Rice Compared to California:A Consequences for Human Dietary Exposure. Environmental Science & (amp; Technology, 2007, 41, 2178-2183. | 4.6 | 253 |
| 16 | In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water<br>Research, 2015, 74, 100-109.                                                                                    | 5.3 | 246 |
| 17 | Selenium Characterization in the Global Rice Supply Chain. Environmental Science & Technology, 2009, 43, 6024-6030.                                                                                                    | 4.6 | 191 |
| 18 | Organic Matter—Solid Phase Interactions Are Critical for Predicting Arsenic Release and Plant Uptake<br>in Bangladesh Paddy Soils. Environmental Science & Technology, 2011, 45, 6080-6087.                            | 4.6 | 181 |

2

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Inorganic arsenic levels in baby rice are of concern. Environmental Pollution, 2008, 152, 746-749.                                                                                                                                                         | 3.7 | 168       |
| 20 | Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein,<br>hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic<br>stress in mice. Hepatology, 2012, 55, 1070-1082. | 3.6 | 163       |
| 21 | Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environment International, 2009, 35, 473-475.                                                                                 | 4.8 | 138       |
| 22 | Localized Flux Maxima of Arsenic, Lead, and Iron around Root Apices in Flooded Lowland Rice.<br>Environmental Science & Technology, 2014, 48, 8498-8506.                                                                                                   | 4.6 | 124       |
| 23 | Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytologist, 2011, 189, 200-209.                                                                                                                                  | 3.5 | 121       |
| 24 | Arsenic uptake and speciation in the rootless duckweed <i>Wolffia globosa</i> . New Phytologist, 2009, 182, 421-428.                                                                                                                                       | 3.5 | 111       |
| 25 | Distribution and Translocation of Selenium from Soil to Grain and Its Speciation in Paddy Rice<br>( <i>Oryza sativa</i> L.). Environmental Science & Technology, 2010, 44, 6706-6711.                                                                      | 4.6 | 105       |
| 26 | Novel Precipitated Zirconia-Based DGT Technique for High-Resolution Imaging of Oxyanions in Waters and Sediments. Environmental Science & amp; Technology, 2015, 49, 3653-3661.                                                                            | 4.6 | 105       |
| 27 | Codeposition of Organic Carbon and Arsenic in Bengal Delta Aquifers. Environmental Science &<br>Technology, 2006, 40, 4928-4935.                                                                                                                           | 4.6 | 100       |
| 28 | Arsenic Limits Trace Mineral Nutrition (Selenium, Zinc, and Nickel) in Bangladesh Rice Grain.<br>Environmental Science & Technology, 2009, 43, 8430-8436.                                                                                                  | 4.6 | 99        |
| 29 | Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agriculture, Ecosystems and Environment, 2016, 219, 171-178.                                                  | 2.5 | 84        |
| 30 | Inorganic arsenic and trace elements in Ghanaian grain staples. Environmental Pollution, 2011, 159, 2435-2442.                                                                                                                                             | 3.7 | 82        |
| 31 | Use of diffusive gradient in thin films for in situ measurements: A review on the progress in chemical<br>fractionation, speciation and bioavailability of metals in waters. Analytica Chimica Acta, 2017, 983,<br>54-66.                                  | 2.6 | 82        |
| 32 | Improved Diffusive Gradients in Thin Films (DGT) Measurement of Total Dissolved Inorganic Arsenic in<br>Waters and Soils Using a Hydrous Zirconium Oxide Binding Layer. Analytical Chemistry, 2014, 86,<br>3060-3067.                                      | 3.2 | 79        |
| 33 | Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Science of the<br>Total Environment, 2014, 485-486, 428-434.                                                                                                     | 3.9 | 78        |
| 34 | Baseline Soil Variation Is a Major Factor in Arsenic Accumulation in Bengal Delta Paddy Rice.<br>Environmental Science & Technology, 2009, 43, 1724-1729.                                                                                                  | 4.6 | 74        |
| 35 | Evaluation of in Situ DGT Measurements for Predicting the Concentration of Cd in Chinese<br>Field-Cultivated Rice: Impact of Soil Cd:Zn Ratios. Environmental Science & Technology, 2012, 46,<br>8009-8016.                                                | 4.6 | 73        |
| 36 | Inorganic arsenic levels in rice milk exceed EU and US drinking water standards. Journal of<br>Environmental Monitoring, 2008, 10, 428.                                                                                                                    | 2.1 | 68        |

| #  | Article                                                                                                                                                                                                                                                 | IF         | CITATIONS      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 37 | Microbial mediated arsenic biotransformation in wetlands. Frontiers of Environmental Science and Engineering, 2017, 11, 1.                                                                                                                              | 3.3        | 67             |
| 38 | Enhanced transfer of arsenic to grain for Bangladesh grown rice compared to US and EU.<br>Environment International, 2009, 35, 476-479.                                                                                                                 | 4.8        | 64             |
| 39 | Rice Grain Cadmium Concentrations in the Global Supply-Chain. Exposure and Health, 2020, 12, 869-876.                                                                                                                                                   | 2.8        | 63             |
| 40 | Two-dimensional images of dissolved sulfide and metals in anoxic sediments by a novel diffusive<br>gradients in thin film probe and optical scanning techniques. TrAC - Trends in Analytical Chemistry,<br>2015, 66, 63-71.                             | 5.8        | 57             |
| 41 | Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil<br>of southern China using nanostructured α-MnO2: Pot experiment and field application. Science of the<br>Total Environment, 2019, 650, 546-556. | 3.9        | 53             |
| 42 | Accumulation or production of arsenobetaine in humans?. Journal of Environmental Monitoring, 2010, 12, 832.                                                                                                                                             | 2.1        | 51             |
| 43 | Accumulation, Subcellular Distribution and Toxicity of Copper in Earthworm ( <i>Eisenia fetida)</i> in the Presence of Ciprofloxacin. Environmental Science & Technology, 2009, 43, 3688-3693.                                                          | 4.6        | 50             |
| 44 | Arsenate Causes Differential Acute Toxicity to Two P-deprived Genotypes of Rice Seedlings (Oryza) Tj ETQq0 0 (                                                                                                                                          | Ͻ rgβŢ /Ον | erlock 10 Tf 5 |
| 45 | High-resolution measurement and mapping of tungstate in waters, soils and sediments using the<br>low-disturbance DGT sampling technique. Journal of Hazardous Materials, 2016, 316, 69-76.                                                              | 6.5        | 48             |
| 46 | Sediment metal bioavailability in Lake Taihu, China: evaluation of sequential extraction, DGT, and PBET techniques. Environmental Science and Pollution Research, 2015, 22, 12919-12928.                                                                | 2.7        | 45             |
| 47 | Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale,<br>China. Journal of Environmental Sciences, 2013, 25, 144-154.                                                                                  | 3.2        | 44             |
| 48 | Global Sourcing of Low-Inorganic Arsenic Rice Grain. Exposure and Health, 2020, 12, 711-719.                                                                                                                                                            | 2.8        | 43             |
| 49 | Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse. Journal of Soils and Sediments, 2011, 11, 115-123.                                                                                                       | 1.5        | 40             |
| 50 | Urinary excretion of arsenic following rice consumption. Environmental Pollution, 2014, 194, 181-187.                                                                                                                                                   | 3.7        | 38             |
| 51 | Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic.<br>Environmental Pollution, 2013, 172, 149-154.                                                                                                      | 3.7        | 36             |
| 52 | Rice–arsenate interactions in hydroponics: a three-gene model for tolerance. Journal of Experimental<br>Botany, 2008, 59, 2277-2284.                                                                                                                    | 2.4        | 34             |
| 53 | Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma, 2020, 362, 114096.                                                                                           | 2.3        | 34             |
| 54 | Localized Intensification of Arsenic Release within the Emergent Rice Rhizosphere. Environmental<br>Science & Technology, 2020, 54, 3138-3147.                                                                                                          | 4.6        | 34             |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spatial Heterogeneity and Kinetic Regulation of Arsenic Dynamics in Mangrove Sediments: The<br>Sundarbans, Bangladesh. Environmental Science & Technology, 2012, 46, 8645-8652.                          | 4.6 | 31        |
| 56 | Inoculating chlamydospores of Trichoderma asperellum SM-12F1 changes arsenic availability and enzyme activity in soils and improves water spinach growth. Chemosphere, 2017, 175, 497-504.               | 4.2 | 31        |
| 57 | New Training to Meet the Global Phosphorus Challenge. Environmental Science & Technology, 2019, 53, 8479-8481.                                                                                           | 4.6 | 29        |
| 58 | An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice. Environmental Geochemistry and Health, 2013, 35, 379-390.                                    | 1.8 | 26        |
| 59 | Arsenic in Bangladeshi soils related to physiographic region, paddy management, and mirco- and macro-elemental status. Science of the Total Environment, 2017, 590-591, 406-415.                         | 3.9 | 26        |
| 60 | Novel DGT method with tri-metal oxide adsorbent for in situ spatiotemporal flux measurement of fluoride in waters and sediments. Water Research, 2016, 99, 200-208.                                      | 5.3 | 25        |
| 61 | Biovolatilization of Arsenic as Arsines from Seawater. Environmental Science & Technology, 2018, 52, 3968-3974.                                                                                          | 4.6 | 23        |
| 62 | Research agendas for the sustainable management of tropical peatland in Malaysia. Environmental<br>Conservation, 2015, 42, 73-83.                                                                        | 0.7 | 22        |
| 63 | In situ sampling and speciation method for measuring dissolved phosphite at ultratrace concentrations in the natural environment. Water Research, 2018, 137, 281-289.                                    | 5.3 | 22        |
| 64 | Field-Scale Heterogeneity and Geochemical Regulation of Arsenic, Iron, Lead, and Sulfur Bioavailability<br>in Paddy Soil. Environmental Science & Technology, 2018, 52, 12098-12107.                     | 4.6 | 22        |
| 65 | Rice Rhizospheric Effects on the Bioavailability of Toxic Trace Elements during Land Application of Biochar. Environmental Science & Technology, 2021, 55, 7344-7354.                                    | 4.6 | 22        |
| 66 | The role of polarity in antonym and synonym conceptual knowledge: Evidence from stroke aphasia and multidimensional ratings of abstract words. Neuropsychologia, 2012, 50, 2636-2644.                    | 0.7 | 21        |
| 67 | Inorganic species of arsenic in soil solution determined by microcartridges and ferrihydrite-based diffusive gradient in thin films (DGT). Talanta, 2013, 104, 83-89.                                    | 2.9 | 20        |
| 68 | <i>In Vitro</i> Model To Assess Arsenic Bioaccessibility and Speciation in Cooked Shrimp. Journal of Agricultural and Food Chemistry, 2018, 66, 4710-4715.                                               | 2.4 | 20        |
| 69 | Development and Application of the Diffusive Gradients in Thin Films Technique for the Measurement of Nitrate in Soils. Analytical Chemistry, 2017, 89, 1178-1184.                                       | 3.2 | 19        |
| 70 | Assessment of the solubility and bioaccessibility of arsenic in realgar wine using a simulated gastrointestinal system. Science of the Total Environment, 2011, 409, 2357-2360.                          | 3.9 | 18        |
| 71 | Extending the functionality of the slurry ferrihydrite-DGT method: Performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water. Chemosphere, 2017, 184, 812-819. | 4.2 | 18        |
| 72 | Physiographical variability in arsenic dynamics in Bangladeshi soils. Science of the Total Environment, 2018, 612, 1365-1372.                                                                            | 3.9 | 18        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | In Situ Selective Measurement of Se <sup>IV</sup> in Waters and Soils: Diffusive Gradients in<br>Thin-Films with Bi-Functionalized Silica Nanoparticles. Environmental Science & Technology, 2018,<br>52, 14140-14148.                              | 4.6 | 18        |
| 74 | Optimising Sample Preparation and Calibrations in EDXRF for Quantitative Soil Analysis. Agronomy, 2020, 10, 1309.                                                                                                                                   | 1.3 | 17        |
| 75 | Predicting Trace Metal Exposure in Aquatic Ecosystems: Evaluating DGT as a Biomonitoring Tool.<br>Exposure and Health, 2020, 12, 19-31.                                                                                                             | 2.8 | 16        |
| 76 | Elevated Trimethylarsine Oxide and Inorganic Arsenic in Northern Hemisphere Summer Monsoonal<br>Wet Deposition. Environmental Science & Technology, 2017, 51, 12210-12218.                                                                          | 4.6 | 14        |
| 77 | In Situ Measurement of Thallium in Natural Waters by a Technique Based on Diffusive Gradients in<br>Thin Films Containing a δ-MnO <sub>2</sub> Gel Layer. Analytical Chemistry, 2019, 91, 1344-1352.                                                | 3.2 | 13        |
| 78 | Maritime Deposition of Organic and Inorganic Arsenic. Environmental Science & Technology, 2019, 53, 7288-7295.                                                                                                                                      | 4.6 | 12        |
| 79 | Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF. Environmental Sciences: Processes and Impacts, 2013, 15, 1768.                                                                             | 1.7 | 11        |
| 80 | The potential for kelp manufacture to lead to arsenic pollution of remote Scottish islands.<br>Chemosphere, 2006, 65, 332-342.                                                                                                                      | 4.2 | 10        |
| 81 | A cultural practice of drinking realgar wine leading to elevated urinary arsenic and its potential health risk. Environment International, 2011, 37, 889-892.                                                                                       | 4.8 | 9         |
| 82 | Functionalized Mesoporous Silicon Nanomaterials in Inorganic Soil Pollution Research:<br>Opportunities for Soil Protection and Advanced Chemical Imaging. Current Pollution Reports, 2020, 6,<br>264-280.                                           | 3.1 | 9         |
| 83 | How Cover Crop Sowing Date Impacts upon Their Growth, Nutrient Assimilation and the Yield of the Subsequent Commercial Crop. Agronomy, 2022, 12, 369.                                                                                               | 1.3 | 9         |
| 84 | A Novel In Situ Method for Simultaneously and Selectively Measuring As <sup>III</sup> ,<br>Sb <sup>III</sup> , and Se <sup>IV</sup> in Freshwater and Soils. Analytical Chemistry, 2022, 94,<br>4576-4583.                                          | 3.2 | 9         |
| 85 | Influences of phosphorus starvation on OsACR2.1 expression and arsenic metabolism in rice seedlings.<br>Plant and Soil, 2008, 313, 129-139.                                                                                                         | 1.8 | 8         |
| 86 | Transforming phosphorus use on the island of Ireland: A model for a sustainable system. Science of the Total Environment, 2019, 656, 852-861.                                                                                                       | 3.9 | 8         |
| 87 | <i>In Situ</i> Selective Measurement Based on Diffusive Gradients in Thin Films Technique with<br>Mercapto-Functionalized Mesoporous Silica for High-Resolution Imaging of Sb <sup>III</sup> in Soil.<br>Analytical Chemistry, 2020, 92, 3581-3588. | 3.2 | 8         |
| 88 | Feed-derived iodine overrides environmental contribution to cow milk. Journal of Dairy Science, 2020, 103, 6930-6939.                                                                                                                               | 1.4 | 7         |
| 89 | Combining Multiple High-Resolution <i>In Situ</i> Techniques to Understand Phosphorous<br>Availability Around Rice Roots. Environmental Science & Technology, 2021, 55, 13082-13092.                                                                | 4.6 | 7         |
| 90 | The Correct Cover Crop Species Integrated with Slurry Can Increase Biomass, Quality and Nitrogen<br>Cycling to Positively Affect Yields in a Subsequent Spring Barley Rotation. Agronomy, 2020, 10, 1760.                                           | 1.3 | 5         |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | The perception and use of cover crops within the island of Ireland. Annals of Applied Biology, 2021, 179, 34-47.                                                                                                                         | 1.3 | 3         |
| 92 | Pandemic or Environmental Socio-Economic Stressors Which Have Greater Impact on Food Security in<br>the Barishal Division of Bangladesh: Initial Perspectives from Agricultural Officers and Farmers.<br>Sustainability, 2021, 13, 5457. | 1.6 | 3         |
| 93 | Investigation of the Effect of Slurry, Combined with Inorganic N Rate and Timing, on the Yield of Spring Barley Post Cover Crop of Stubble Turnips. Agronomy, 2021, 11, 232.                                                             | 1.3 | 0         |