Suelen Barg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2741373/publications.pdf

Version: 2024-02-01

304743 302126 2,502 37 22 39 citations h-index g-index papers 41 41 41 3414 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Joule Heating and mechanical properties of epoxy/graphene based aerogel composite. Composites Science and Technology, 2022, 218, 109199.	7.8	23
2	Tailoring the Microstructure of Lamellar Ti ₃ C ₂ T _{<i>x</i>} MXene Aerogel by Compressive Straining. ACS Nano, 2022, 16, 1896-1908.	14.6	10
3	Nanoparticle-enhanced multifunctional nanocarbons—recent advances on electrochemical energy storage applications. Journal Physics D: Applied Physics, 2022, 55, 413001.	2.8	15
4	Realization of 3D epoxy resin/Ti ₃ C ₂ T _x MXene aerogel composites for low-voltage electrothermal heating. 2D Materials, 2021, 8, 025022.	4.4	17
5	Ice-templated hybrid graphene oxide—graphene nanoplatelet lamellar architectures: tuning mechanical and electrical properties. Nanotechnology, 2021, 32, 205601.	2.6	6
6	Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: Progress and challenges. Journal of Materials Research, 2021, 36, 4578-4600.	2.6	14
7	All-In-One MXene–Boron Nitride–MXene "OREO―with Vertically Aligned Channels for Flexible Structural Supercapacitor Design. ACS Applied Energy Materials, 2021, 4, 7959-7972.	5.1	7
8	Unused to useful: Recycling plasma chamber coated waste composite of ZnO and \hat{l} ±-Fe2O3 into an active material for sustainable waste-water treatment. Chemical Engineering Journal Advances, 2021, 7, 100120.	5.2	4
9	MXeneâ∈Based Anodes for Metalâ€lon Batteries. Batteries and Supercaps, 2020, 3, 214-235.	4.7	75
10	MXene Tunable Lamellae Architectures for Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 411-422.	5.1	46
11	Freezeâ€assisted Tape Casting of Vertically Aligned MXene Films for High Rate Performance Supercapacitors. Energy and Environmental Materials, 2020, 3, 380-388.	12.8	38
12	Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition. Nanotechnology, 2020, 31, 425703.	2.6	18
13	Unravelling the Mechanism of Rechargeable Aqueous Zn–MnO ₂ Batteries: Implementation of Charging Process by Electrodeposition of MnO ₂ . ChemSusChem, 2020, 13, 4103-4110.	6.8	74
14	Heteroatomâ€Doped and Oxygenâ€Functionalized Nanocarbons for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2020, 10, 2001239.	19.5	362
15	MXeneâ∈Based Anodes for Metalâ€lon Batteries. Batteries and Supercaps, 2020, 3, 211-211.	4.7	1
16	MXene-based 3D porous macrostructures for electrochemical energy storage. JPhys Materials, 2020, 3, 022001.	4.2	42
17	Direct 3D printing of graphene using capillary suspensions. Nanoscale, 2020, 12, 11440-11447.	5.6	26
18	3D Printing of Freestanding MXene Architectures for Currentâ€Collectorâ€Free Supercapacitors. Advanced Materials, 2019, 31, e1902725.	21.0	311

#	Article	IF	CITATIONS
19	SiC porous structures obtained with innovative shaping technologies. Journal of the European Ceramic Society, 2018, 38, 823-835.	5.7	34
20	Complex ceramic architectures by directed assembly of â€responsive' particles. Journal of the European Ceramic Society, 2017, 37, 199-211.	5.7	9
21	Light and Strong SiC Networks. Advanced Functional Materials, 2016, 26, 1636-1645.	14.9	109
22	Understanding Mechanical Response of Elastomeric Graphene Networks. Scientific Reports, 2015, 5, 13712.	3.3	64
23	Selfâ€Healing Grapheneâ€Based Composites with Sensing Capabilities. Advanced Materials, 2015, 27, 4788-4794.	21.0	136
24	Printing in Three Dimensions with Graphene. Advanced Materials, 2015, 27, 1688-1693.	21.0	266
25	Joule Heating Characteristics of Emulsionâ€Templated Graphene Aerogels. Advanced Functional Materials, 2015, 25, 28-35.	14.9	99
26	Macroporous polymer nanocomposites synthesised from high internal phase emulsion templates stabilised by reduced graphene oxide. Polymer, 2014, 55, 395-402.	3.8	39
27	Mesoscale assembly of chemically modified graphene into complex cellular networks. Nature Communications, 2014, 5, 4328.	12.8	250
28	A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 2013, 33, 2365-2374.	5.7	15
29	Designing Smart Particles for the Assembly of Complex Macroscopic Structures. Angewandte Chemie - International Edition, 2013, 52, 7805-7808.	13.8	26
30	Cellular ceramics from emulsified suspensions of mixed particles. Journal of Porous Materials, 2012, 19, 859-867.	2.6	19
31	Processing of Open Porous Zirconia via Alkane-Phase Emulsified Suspensions for Plasma Applications. International Journal of Applied Ceramic Technology, 2011, 8, 85-93.	2.1	17
32	Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. Journal of Membrane Science, 2011, 383, 35-43.	8.2	40
33	Oxygen feed membranes in autothermal steam-reformers – A robust temperature control. Fuel, 2010, 89, 1257-1264.	6.4	18
34	Development of a Novel Zinc/Air Fuel Cell with a Zn Foam Anode, a PVA/KOH Membrane and a MnO ₂ /SiOC-Based Air Cathode. ECS Transactions, 2010, 28, 13-24.	0.5	42
35	Processing and Properties of Graded Ceramic Filters. Journal of the American Ceramic Society, 2009, 92, 2854-2860.	3.8	38
36	New cellular ceramics from high alkane phase emulsified suspensions (HAPES). Journal of the European Ceramic Society, 2009, 29, 2439-2446.	5.7	64

SUELEN BARG

#	Article	IF	CITATIONS
37	Cellular Ceramics by Direct Foaming of Emulsified Ceramic Powder Suspensions. Journal of the American Ceramic Society, 2008, 91, 2823-2829.	3.8	122