
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/274049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	9.4	2,421
2	Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature Genetics, 2013, 45, 1238-1243.	9.4	1,544
3	Multiple common variants for celiac disease influencing immune gene expression. Nature Genetics, 2010, 42, 295-302.	9.4	871
4	Amyotrophic lateral sclerosis. Lancet, The, 2017, 390, 2084-2098.	6.3	867
5	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	6.0	823
6	Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics, 2021, 53, 1300-1310.	9.4	590
7	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
8	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	9.4	494
9	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	6.0	450
10	Disease variants alter transcription factor levels and methylation of their binding sites. Nature Genetics, 2017, 49, 131-138.	9.4	390
11	Identification of context-dependent expression quantitative trait loci in whole blood. Nature Genetics, 2017, 49, 139-145.	9.4	363
12	Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genetics, 2009, 41, 1083-1087.	9.4	344
13	Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurology, The, 2018, 17, 423-433.	4.9	342
14	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	3.8	308
15	Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Human Molecular Genetics, 2012, 21, 3776-3784.	1.4	307
16	Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurology, The, 2014, 13, 1108-1113.	4.9	302
17	Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Research, 2017, 27, 1895-1903.	2.4	277
18	Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1165-1170.	0.9	273

#	Article	IF	CITATIONS
19	Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nature Reviews Neurology, 2017, 13, 96-104.	4.9	245
20	Population genetic differentiation of height and body mass index across Europe. Nature Genetics, 2015, 47, 1357-1362.	9.4	227
21	<scp>C</scp> 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Annals of Neurology, 2015, 78, 426-438.	2.8	225
22	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
23	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	9.4	218
24	Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nature Genetics, 2021, 53, 1311-1321.	9.4	218
25	Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2008, 40, 29-31.	9.4	205
26	Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurology, The, 2010, 9, 986-994.	4.9	205
27	The C9ORF72 expansion mutation is a common cause of ALS+/â^'FTD in Europe and has a single founder. European Journal of Human Genetics, 2013, 21, 102-108.	1.4	201
28	ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurology, The, 2007, 6, 869-877.	4.9	195
29	ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics, 2019, 35, 4754-4756.	1.8	183
30	Reduced expression of the <i>Kinesin-Associated Protein 3</i> (<i>KIFAP3</i>) gene increases survival in sporadic amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9004-9009.	3.3	177
31	Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nature Genetics, 2020, 52, 1303-1313.	9.4	163
32	Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nature Genetics, 2021, 53, 128-134.	9.4	155
33	Blood lipids influence DNA methylation in circulating cells. Genome Biology, 2016, 17, 138.	3.8	154
34	The role of <i>TREM2</i> R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's and Dementia, 2015, 11, 1407-1416.	0.4	152
35	The multistep hypothesis of ALS revisited. Neurology, 2018, 91, e635-e642.	1.5	146
36	Impaired Structural Motor Connectome in Amyotrophic Lateral Sclerosis. PLoS ONE, 2011, 6, e24239.	1.1	124

#	Article	IF	CITATIONS
37	Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biology, 2016, 17, 191.	3.8	120
38	A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in <i>C9orf72</i> reveals marked differences in results among 14 laboratories. Journal of Medical Genetics, 2014, 51, 419-424.	1.5	118
39	Cell Specific eQTL Analysis without Sorting Cells. PLoS Genetics, 2015, 11, e1005223.	1.5	115
40	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 2017, 8, 14774.	5.8	114
41	ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biology, 2020, 21, 102.	3.8	114
42	Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathologica, 2016, 132, 175-196.	3.9	113
43	Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Medicine, 2018, 15, e1002487.	3.9	111
44	Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Human Brain Mapping, 2014, 35, 1351-1361.	1.9	109
45	UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 630.e3.	1.5	107
46	Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 367-371.	0.9	106
47	Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathologica, 2016, 132, 145-147.	3.9	104
48	Hexanucleotide repeat expansions in <i>C9ORF72</i> in the spectrum of motor neuron diseases. Neurology, 2012, 79, 878-882.	1.5	100
49	Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nature Communications, 2016, 7, 10326.	5.8	100
50	Cortical thickness in ALS: towards a marker for upper motor neuron involvement. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 288-294.	0.9	94
51	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	5.8	93
52	Smoking, Alcohol Consumption, and the Risk of Amyotrophic Lateral Sclerosis: A Population-based Study. American Journal of Epidemiology, 2012, 176, 233-239.	1.6	91
53	<scp><i>C9orf72</i></scp> and <scp><i>UNC13A</i></scp> are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genomeâ€wide metaâ€analysis. Annals of Neurology, 2014, 76, 120-133.	2.8	91
54	Effect of Presymptomatic Body Mass Index and Consumption of Fat and Alcohol on Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 1155.	4.5	87

#	Article	IF	CITATIONS
55	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	1.5	86
56	Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis. Human Brain Mapping, 2014, 35, 4386-4395.	1.9	84
57	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	5.8	84
58	Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nature Communications, 2019, 10, 2176.	5.8	83
59	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
60	Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology, 2017, 89, 1915-1922.	1.5	82
61	Prior medical conditions and the risk of amyotrophic lateral sclerosis. Journal of Neurology, 2014, 261, 1949-1956.	1.8	80
62	Subcortical structures in amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1075-1082.	1.5	78
63	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	7.1	75
64	The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain, 2019, 142, 1631-1643.	3.7	73
65	Glutaminase Deficiency Caused by Short Tandem Repeat Expansion in <i>GLS</i> . New England Journal of Medicine, 2019, 380, 1433-1441.	13.9	71
66	What we truly know about occupation as a risk factor for ALS: A critical and systematic review. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2009, 10, 295-301.	2.3	69
67	Widespread structural brain involvement in ALS is not limited to the <i>C9orf72</i> repeat expansion. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1354-1360.	0.9	69
68	Altered perivascular fibroblast activity precedes ALS disease onset. Nature Medicine, 2021, 27, 640-646.	15.2	69
69	Brain morphologic changes in asymptomatic <i>C9orf72</i> repeat expansion carriers. Neurology, 2015, 85, 1780-1788.	1.5	66
70	Monitoring disease progression with plasma creatinine in amyotrophic lateral sclerosis clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 156-161.	0.9	62
71	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	5.8	61
72	The project MinE databrowser: bringing large-scale whole-genome sequencing in ALS to researchers and the public. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 432-440.	1.1	60

#	Article	IF	CITATIONS
73	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	4.5	57
74	RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture. Stroke, 2016, 47, 1286-1293.	1.0	55
75	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
76	Long-Term Air Pollution Exposure and Amyotrophic Lateral Sclerosis in Netherlands: A Population-based Case–control Study. Environmental Health Perspectives, 2017, 125, 097023.	2.8	54
77	A large genome scan for rare CNVs in amyotrophic lateral sclerosis. Human Molecular Genetics, 2010, 19, 4091-4099.	1.4	51
78	Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron, 2022, 110, 992-1008.e11.	3.8	51
79	Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS. PLoS ONE, 2012, 7, e35333.	1.1	50
80	NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis. Human Molecular Genetics, 2012, 21, 2497-2502.	1.4	49
81	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	3.8	49
82	A case-control study of hormonal exposures as etiologic factors for ALS in women. Neurology, 2017, 89, 1283-1290.	1.5	48
83	Occupational exposure and amyotrophic lateral sclerosis in a prospective cohort. Occupational and Environmental Medicine, 2017, 74, 578-585.	1.3	46
84	Multimodal longitudinal study of structural brain involvement in amyotrophic lateral sclerosis. Neurology, 2020, 94, e2592-e2604.	1.5	46
85	Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 867-875.	0.9	46
86	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46
87	Multicentre, cross-cultural, population-based, case–control study of physical activity as risk factor for amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 797-803.	0.9	45
88	Cognitive and behavioural changes in PLS and PMA:challenging the concept of restricted phenotypes. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 141-147.	0.9	45
89	Association of maternal prenatal smoking GFI1-locus and cardio-metabolic phenotypes in 18,212 adults. EBioMedicine, 2018, 38, 206-216.	2.7	43
90	Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathologica, 2016, 131, 465-480.	3.9	41

#	Article	IF	CITATIONS
91	Pharmacokinetics of intravenous immunoglobulin in multifocal motor neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1145-1148.	0.9	40
92	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	5.8	38
93	Factors related to caregiver strain in ALS: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 775-781.	0.9	37
94	Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study. PLoS ONE, 2018, 13, e0198874.	1.1	37
95	Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Science Translational Medicine, 2019, 11, .	5.8	37
96	Cognitive behavioural therapy and quality of life in psychologically distressed patients with amyotrophic lateral sclerosis and their caregivers: Results of a prematurely stopped randomized controlled trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 309-315.	1.1	36
97	Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurology, The, 2021, 20, 373-384.	4.9	35
98	Patterns of symptom development in patients with motor neuron disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 21-28.	1.1	34
99	C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.1-281.	0.9	33
100	<i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.	1.5	33
101	A case series of PLS patients with frontotemporal dementia and overview of the literature. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 534-548.	1.1	31
102	Functional genomics analysis identifies T and NK cell activation as a driver of epigenetic clock progression. Genome Biology, 2022, 23, 24.	3.8	30
103	Prospective natural history study of <i>C9orf72</i> ALS clinical characteristics and biomarkers. Neurology, 2019, 93, e1605-e1617.	1.5	29
104	Progression of cognitive and behavioural impairment in early amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 779-780.	0.9	29
105	Blood Metal Levels and Amyotrophic Lateral Sclerosis Risk: A Prospective Cohort. Annals of Neurology, 2021, 89, 125-133.	2.8	29
106	Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference. Genome Biology, 2020, 21, 220.	3.8	27
107	No mutations in hnRNPA1 and hnRNPA2B1 in Dutch patients with amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Neurobiology of Aging, 2014, 35, 1956.e9-1956.e11.	1.5	26
108	Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophrenia Research, 2018, 199, 195-202.	1.1	26

#	Article	IF	CITATIONS
109	Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiology of Aging, 2019, 74, 234.e9-234.e15.	1.5	26
110	Circulating microRNAs in patients with intracranial aneurysms. PLoS ONE, 2017, 12, e0176558.	1.1	26
111	Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. Npj Genomic Medicine, 2020, 5, 10.	1.7	25
112	Myasthenia gravis with muscle specific kinase antibodies mimicking amyotrophic lateral sclerosis. Neuromuscular Disorders, 2016, 26, 350-353.	0.3	24
113	Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation. Nature Communications, 2018, 9, 3738.	5.8	24
114	Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene. Cell Reports, 2020, 33, 108456.	2.9	24
115	No evidence for shared genetic basis of common variants in multiple sclerosis and amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 1916-1922.	1.4	23
116	Coding and Non-Coding RNA Abnormalities in Bipolar Disorder. Genes, 2019, 10, 946.	1.0	23
117	The Distinct Traits of the UNC13A Polymorphism in Amyotrophic Lateral Sclerosis. Annals of Neurology, 2020, 88, 796-806.	2.8	23
118	Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. Npj Genomic Medicine, 2022, 7, 8.	1.7	23
119	Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiology of Aging, 2015, 36, 2006.e1-2006.e9.	1.5	22
120	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.1	22
121	Reconsidering the causality of TIA1 mutations in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 1-3.	1.1	22
122	RNA-Sequencing Highlights Inflammation and Impaired Integrity of the Vascular Wall in Brain Arteriovenous Malformations. Stroke, 2020, 51, 268-274.	1.0	22
123	Dutch population structure across space, time and GWAS design. Nature Communications, 2020, 11, 4556.	5.8	21
124	Large-scale screening in sporadic amyotrophic lateral sclerosis identifies genetic modifiers in C9orf72 repeat carriers. Neurobiology of Aging, 2016, 39, 220.e9-220.e15.	1.5	20
125	Associations of Electric Shock and Extremely Low-Frequency Magnetic Field Exposure With the Risk of Amyotrophic Lateral Sclerosis. American Journal of Epidemiology, 2019, 188, 796-805.	1.6	20
126	Effect modification of the association between total cigarette smoking and ALS risk by intensity, duration and time-since-quitting: Euro-MOTOR. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 33-39.	0.9	20

#	Article	IF	CITATIONS
127	A neuropsychological and behavioral study of PLS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 376-384.	1.1	19
128	Aerobic Exercise Therapy in Ambulatory Patients With ALS: A Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 2019, 33, 153-164.	1.4	19
129	Incidence, Prevalence, and Geographical Clustering of Motor Neuron Disease in the Netherlands. Neurology, 2021, 96, .	1.5	19
130	Genome-wide identification of directed gene networks using large-scale population genomics data. Nature Communications, 2018, 9, 3097.	5.8	18
131	Cross-sectional and longitudinal assessment of the upper cervical spinal cord in motor neuron disease. Neurolmage: Clinical, 2019, 24, 101984.	1.4	18
132	Genetic analysis of ALS cases in the isolated island population of Malta. European Journal of Human Genetics, 2021, 29, 604-614.	1.4	18
133	Multicentre, population-based, case–control study of particulates, combustion products and amyotrophic lateral sclerosis risk. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 854-860.	0.9	17
134	Derivation of norms for the Dutch version of the Edinburgh cognitive and behavioral ALS screen. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 19-27.	1.1	17
135	The future of motor neuron disease. Journal of Neurology, 2004, 251, 491-500.	1.8	16
136	Screening for rare variants in the coding region of ALS-associated genes at 9p21.2 and 19p13.3. Neurobiology of Aging, 2013, 34, 1518.e5-1518.e7.	1.5	16
137	Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study. Neurobiology of Aging, 2014, 35, 2420.e13-2420.e14.	1.5	16
138	Critical issues in ALS case-control studies: the case of the Euro-MOTOR study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 411-418.	1.1	16
139	Exome array analysis of rare and low frequency variants in amyotrophic lateral sclerosis. Scientific Reports, 2019, 9, 5931.	1.6	16
140	Facial Onset Sensory and Motor Neuronopathy. Neurology: Clinical Practice, 2021, 11, 147-157.	0.8	16
141	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	7.1	16
142	Residential exposure to extremely low frequency electromagnetic fields and the risk of ALS. Neurology, 2014, 83, 1767-1769.	1.5	15
143	Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circulation Research, 2022, 130, 166-180.	2.0	15
144	Exploring the fitness hypothesis in ALS: a population-based case-control study of parental cause of death and lifespan. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 550-556.	0.9	14

#	Article	IF	CITATIONS
145	Pharmacogenetic interactions in amyotrophic lateral sclerosis: a step closer to a cure?. Pharmacogenomics Journal, 2020, 20, 220-226.	0.9	14
146	<i>SCFD1</i> expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed. Brain Communications, 2021, 3, fcab236.	1.5	14
147	The verbal fluency index: Dutch normative data for cognitive testing in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 388-391.	1.1	13
148	The role of de novo mutations in the development of amyotrophic lateral sclerosis. Human Mutation, 2017, 38, 1534-1541.	1.1	13
149	Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies. NAR Genomics and Bioinformatics, 2020, 2, Iqaa105.	1.5	13
150	Advances in the genetic classification of amyotrophic lateral sclerosis. Current Opinion in Neurology, 2021, 34, 756-764.	1.8	12
151	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	3.6	12
152	DNA methylation in peripheral tissues and left-handedness. Scientific Reports, 2022, 12, 5606.	1.6	12
153	Are CHCHD10 mutations indeed associated with familial amyotrophic lateral sclerosis?. Brain, 2014, 137, e313-e313.	3.7	11
154	Serum angiogenin levels are elevated in ALS, but not Parkinson's disease: TableÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1439-1440.	0.9	11
155	Whole Blood Gene Expression Profiles of Patients with a Past Aneurysmal Subarachnoid Hemorrhage. PLoS ONE, 2015, 10, e0139352.	1.1	11
156	The effect of genetic vulnerability and military deployment on the development of post-traumatic stress disorder and depressive symptoms. European Neuropsychopharmacology, 2019, 29, 405-415.	0.3	11
157	The Effect of <scp> <i>SMN </i> </scp> Gene Dosage on <scp>ALS </scp> Risk and Disease Severity. Annals of Neurology, 2021, 89, 686-697.	2.8	10
158	Characterising ALS disease progression according to El Escorial and Gold Coast criteria. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 865-870.	0.9	10
159	A replication study of genetic risk loci for ischemic stroke in a Dutch population: a case-control study. Scientific Reports, 2017, 7, 12175.	1.6	9
160	Genotype-phenotype correlations of <i>KIF5A</i> stalk domain variants. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 561-570.	1.1	9
161	CGG-repeat expansion in FMR1 is not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 1852.e1-1852.e3.	1.5	8
162	Sensitivity of brain MRI and neurological examination for detection of upper motor neurone degeneration in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 1.1-11.	0.9	8

#	Article	IF	CITATIONS
163	Multivariate genome-wide analysis of stress-related quantitative phenotypes. European Neuropsychopharmacology, 2019, 29, 1354-1364.	0.3	7
164	Genetic cross-disorder analysis in psychiatry: from methodology to clinical utility. British Journal of Psychiatry, 2020, 216, 246-249.	1.7	7
165	Distinctive pattern of temporal atrophy in patients with frontotemporal dementia and the I383V variant in <i>TARDBP</i> . Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 787-789.	0.9	5
166	No association between gluten sensitivity and amyotrophic lateral sclerosis. Journal of Neurology, 2017, 264, 694-700.	1.8	4
167	Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy. Neurobiology of Aging, 2020, 92, 153.e1-153.e5.	1.5	4
168	Cortical and subcortical changes in resting-state neuronal activity and connectivity in early symptomatic ALS and advanced frontotemporal dementia. NeuroImage: Clinical, 2022, 34, 102965.	1.4	3
169	Genome-wide linkage analysis combined with genome sequencing in large families with intracranial aneurysms. European Journal of Human Genetics, 2022, 30, 833-840.	1.4	2
170	What does age at onset in ALS tell us about the genetic basis of the disease?. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 250-250.	0.9	1
171	Role of Rare Genetic Variants Found in Families With Intracranial Aneurysms in the General Dutch and UK Population. Stroke, 2021, 52, e540-e541.	1.0	1
172	Genome-Wide Identification of the Genetic Basis of Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	1
173	A stroke of insight from genetics. Lancet Neurology, The, 2016, 15, 653-654.	4.9	0
174	0411â€Exposure to diesel engine exhaust and the risk of als. , 2017, , .		0
175	0325â€Future directions for occupational epidemiological research on neurodegenerative disorders. , 2017, , .		0
176	O6E.6â€Occupational exposures and ALS: international collaborations and new ways to identify risk factors. Occupational and Environmental Medicine, 2019, 76, A61.1-A61.	1.3	0