
Ji-Ho Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2740098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 2009, 8, 331-336.	27.5	1,731
2	Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas. Cancer Research, 2009, 69, 3892-3900.	0.9	968
3	Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 2014, 9 Suppl 1, 51.	6.7	534
4	Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Advanced Materials, 2008, 20, 1630-1635.	21.0	516
5	Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Materials, 2011, 10, 545-552.	27.5	506
6	Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nature Communications, 2016, 7, 12277.	12.8	420
7	Hybrid Nanoparticles for Detection and Treatment of Cancer. Advanced Materials, 2012, 24, 3779-3802.	21.0	406
8	Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery. Angewandte Chemie - International Edition, 2008, 47, 7284-7288.	13.8	299
9	Cooperative nanomaterial system to sensitize, target, and treat tumors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 981-986.	7.1	281
10	Cooperative Nanoparticles for Tumor Detection and Photothermally Triggered Drug Delivery. Advanced Materials, 2010, 22, 880-885.	21.0	225
11	Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. Advanced Materials, 2019, 31, e1903637.	21.0	187
12	Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy Data for Lung Cancer Diagnosis. Analytical Chemistry, 2017, 89, 6695-6701.	6.5	183
13	Liposomal Indocyanine Green for Enhanced Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 5683-5691.	8.0	176
14	Photothermal Inhibition of Neural Activity with Near-Infrared-Sensitive Nanotransducers. ACS Nano, 2014, 8, 8040-8049.	14.6	145
15	Liposome-Based Engineering of Cells To Package Hydrophobic Compounds in Membrane Vesicles for Tumor Penetration. Nano Letters, 2015, 15, 2938-2944.	9.1	144
16	Surface Chemistry of Gold Nanoparticles Mediates Their Exocytosis in Macrophages. ACS Nano, 2014, 8, 6232-6241.	14.6	143
17	Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nature Communications, 2018, 9, 1969.	12.8	132
18	Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles. ACS Applied Materials & Interfaces, 2016, 8, 6790-6795.	8.0	99

#	Article	IF	CITATIONS
19	Enhanced Performance of a Molecular Photoacoustic Imaging Agent by Encapsulation in Mesoporous Silicon Nanoparticles. Advanced Materials, 2018, 30, e1800512.	21.0	89
20	Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy. Journal of Controlled Release, 2014, 191, 98-104.	9.9	85
21	Electro-optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface. ACS Nano, 2016, 10, 4274-4281.	14.6	68
22	Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy. ACS Nano, 2020, 14, 6519-6531.	14.6	67
23	Liposomal delivery systems for intestinal lymphatic drug transport. Biomaterials Research, 2016, 20, 36.	6.9	66
24	Local Heating of Discrete Droplets Using Magnetic Porous Silicon-Based Photonic Crystals. Journal of the American Chemical Society, 2006, 128, 7938-7946.	13.7	61
25	Nanoparticle platforms for combined photothermal and photodynamic therapy. Biomedical Engineering Letters, 2013, 3, 67-73.	4.1	60
26	Single-Cell Photothermal Neuromodulation for Functional Mapping of Neural Networks. ACS Nano, 2019, 13, 544-551.	14.6	58
27	Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging. European Journal of Cardio-thoracic Surgery, 2016, 49, 1497-1502.	1.4	55
28	Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins. International Journal of Pharmaceutics, 2016, 515, 300-306.	5.2	51
29	Cytotoxic Effects of Plant Sap-Derived Extracellular Vesicles on Various Tumor Cell Types. Journal of Functional Biomaterials, 2020, 11, 22.	4.4	47
30	Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. Journal of Controlled Release, 2020, 319, 77-86.	9.9	46
31	Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering. Scientific Reports, 2014, 4, 5090.	3.3	45
32	Cooperative tumour cell membrane targeted phototherapy. Nature Communications, 2017, 8, 15880.	12.8	42
33	Establishment of a controlled insulin delivery system using a glucose-responsive double-layered nanogel. RSC Advances, 2015, 5, 14482-14491.	3.6	40
34	Gold Nanorod-based Photo-PCR System for One-Step, Rapid Detection of Bacteria. Nanotheranostics, 2017, 1, 178-185.	5.2	39
35	Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for an enhanced anti-inflammatory effect. Biomaterials Science, 2017, 5, 1670-1677.	5.4	38
36	Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography. Methods, 2018, 136, 160-167.	3.8	38

#	Article	IF	CITATIONS
37	Phage display-identified PD-L1-binding peptides reinvigorate T-cell activity and inhibit tumor progression. Biomaterials, 2020, 247, 119984.	11.4	36
38	One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector. Physical Review Letters, 2015, 115, 153902.	7.8	35
39	Immunoglobulin Fc-fused, neuropilin-1-specific peptide shows efficient tumor tissue penetration and inhibits tumor growth via anti-angiogenesis. Journal of Controlled Release, 2015, 216, 56-68.	9.9	34
40	Highly sensitive and selective anticancer effect by conjugated HA-cisplatin in non-small cell lung cancer overexpressed with CD44. Experimental Lung Research, 2014, 40, 475-484.	1.2	33
41	Effective Retinal Penetration of Lipophilic and Lipid-Conjugated Hydrophilic Agents Delivered by Engineered Liposomes. Molecular Pharmaceutics, 2017, 14, 423-430.	4.6	33
42	Nanomedicine for the Treatment of Rheumatoid Arthritis. Molecular Pharmaceutics, 2021, 18, 539-549.	4.6	33
43	Photothermally Amplified Therapeutic Liposomes for Effective Combination Treatment of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 6118-6123.	8.0	32
44	Cyclic tangential flow filtration system for isolation of extracellular vesicles. APL Bioengineering, 2021, 5, 016103.	6.2	31
45	Biodistribution and Pharmacokinectics of Liposomes and Exosomes in a Mouse Model of Sepsis. Pharmaceutics, 2021, 13, 427.	4.5	30
46	Evaluation of Intraoperative Near-Infrared Fluorescence Visualization of the Lung Tumor Margin With Indocyanine Green Inhalation. JAMA Surgery, 2020, 155, 732.	4.3	29
47	Intratumoral depletion of regulatory T cells using CD25-targeted photodynamic therapy in a mouse melanoma model induces antitumoral immune responses. Oncotarget, 2017, 8, 47440-47453.	1.8	28
48	Magnetophoretic Sorting of Single Cell-Containing Microdroplets. Micromachines, 2016, 7, 56.	2.9	24
49	Stability of Plant Leaf-Derived Extracellular Vesicles According to Preservative and Storage Temperature. Pharmaceutics, 2022, 14, 457.	4.5	24
50	Macrophage-Mediated Exocytosis of Elongated Nanoparticles Improves Hepatic Excretion and Cancer Phototherapy. ACS Applied Materials & Interfaces, 2018, 10, 28450-28457.	8.0	22
51	Anti-Metastatic Effects of Plant Sap-Derived Extracellular Vesicles in a 3D Microfluidic Cancer Metastasis Model. Journal of Functional Biomaterials, 2020, 11, 49.	4.4	21
52	Plasmonic liposomes for synergistic photodynamic and photothermal therapy. Journal of Materials Chemistry B, 2014, 2, 2592.	5.8	20
53	Cellâ€free production and streamlined assay of cytosolâ€penetrating antibodies. Biotechnology and Bioengineering, 2016, 113, 2107-2112.	3.3	20
54	The Potential of Exosomes Derived from Chronic Myelogenous Leukaemia Cells as a Biomarker. Anticancer Research, 2018, 38, 3935-3942.	1.1	19

#	Article	IF	CITATIONS
55	Enteric Polymer-Coated Porous Silicon Nanoparticles for Site-Specific Oral Delivery of IgA Antibody. ACS Biomaterials Science and Engineering, 2022, 8, 4140-4152.	5.2	18
56	Evaluation of cell penetrating peptide coated Mn:ZnS nanoparticles for paclitaxel delivery to cancer cells. Scientific Reports, 2018, 8, 1899.	3.3	16
57	How Did Conventional Nanoparticle-Mediated Photothermal Therapy Become "Hot―in Combination with Cancer Immunotherapy?. Cancers, 2022, 14, 2044.	3.7	15
58	In-vitro cytotoxicity assessment of carbon-nanodot-conjugated Fe-aminoclay (CD-FeAC) and its bio-imaging applications. Journal of Nanobiotechnology, 2015, 13, 88.	9.1	13
59	Singleâ€Molecule Coâ€Immunoprecipitation Reveals Functional Inheritance of EGFRs in Extracellular Vesicles. Small, 2018, 14, e1802358.	10.0	12
60	Self-targeted knockdown of CD44 improves cisplatin sensitivity of chemoresistant non-small cell lung cancer cells. Cancer Chemotherapy and Pharmacology, 2019, 83, 399-410.	2.3	12
61	Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Delivery and Translational Research, 2020, 10, 1876-1887.	5.8	12
62	Macrophage-Targeted Indocyanine Green-Neomannosyl Human Serum AlbuminÂforÂIntraoperative Sentinel Lymph NodeÂMappingÂin Porcine Esophagus. Annals of Thoracic Surgery, 2016, 102, 1149-1155.	1.3	11
63	Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction. Journal of Drug Targeting, 2018, 26, 172-181.	4.4	11
64	Extracellular vesicle (EV)-polyphenol nanoaggregates for microRNA-based cancer diagnosis. NPG Asia Materials, 2019, 11, .	7.9	10
65	Efficient Capture and Raman Analysis of Circulating Tumor Cells by Nano-Undulated AgNPs-rGO Composite SERS Substrates. Sensors, 2020, 20, 5089.	3.8	9
66	GCC2 as a New Early Diagnostic Biomarker for Non-Small Cell Lung Cancer. Cancers, 2021, 13, 5482.	3.7	9
67	Engineered Nanoparticles inside a Microparticle Oral System for Enhanced Mucosal and Systemic Immunity. ACS Applied Materials & Interfaces, 2022, 14, 11124-11143.	8.0	9
68	A Proteomic Approach to Understand the Clinical Significance of Acute Myeloid Leukemia–Derived Extracellular Vesicles Reflecting Essential Characteristics of Leukemia. Molecular and Cellular Proteomics, 2021, 20, 100017.	3.8	8
69	Liposomal borrelidin for treatment of metastatic breast cancer. Drug Delivery and Translational Research, 2018, 8, 1380-1388.	5.8	7
70	Dual size-exclusion chromatography for efficient isolation of extracellular vesicles from bone marrow derived human plasma. Scientific Reports, 2021, 11, 217.	3.3	7
71	Antitumor Efficacy of Focused Ultrasound-MFL Nanoparticles Combination Therapy in Mouse Breast Cancer Xenografts. Materials, 2020, 13, 1099.	2.9	6
72	Management of lymph node metastasis via local chemotherapy can prevent distant metastasis and improve survival in mice. Journal of Controlled Release, 2021, 329, 847-857.	9.9	6

#	Article	IF	CITATIONS
73	Photothermal Transfection for Effective Nonviral Genome Editing. ACS Applied Bio Materials, 2021, 4, 5678-5685.	4.6	4
74	Bio-inspired nanotadpoles with component-specific functionality. Journal of Materials Chemistry B, 2014, 2, 6462-6466.	5.8	3
75	Cold nanorods with an ultrathin anti-biofouling siloxane layer for combinatorial anticancer therapy. Journal of Drug Targeting, 2020, 28, 780-788.	4.4	3
76	Polypeptide-Based K+ Ionophore as a Strong Immunogenic Cell Death Inducer for Cancer Immunotherapy. ACS Applied Bio Materials, 2021, 4, 8333-8342.	4.6	3
77	Coimmunomodulation of tumor and tumor-draining lymph nodes during in situ vaccination promotes antitumor immunity. JCI Insight, 2022, 7, .	5.0	3
78	Lung cancer exosome specific protein 1(LESP-1) as a potential factor for diagnosis and treatment of non-small cell lung cancer Journal of Clinical Oncology, 2020, 38, e15550-e15550.	1.6	2
79	Effective Delivery of Exogenous Compounds to the Optic Nerve by Intravitreal Injection of Liposome. Korean Journal of Ophthalmology: KJO, 2018, 32, 417.	1.1	1
80	Porous Materials for Immune Modulation. Open Material Sciences, 2018, 4, 1-14.	0.8	1
81	Engineered immune cells with nanomaterials to improve adoptive cell therapy. Biomedical Engineering Letters, 2021, 11, 183-195.	4.1	1
82	Drug delivery: Magnetic Luminescent Porous Silicon Microparticles for Localized Delivery of Molecular Drug Payloads (Small 22/2010). Small, 2010, 6, 2545-2545.	10.0	0
83	Random motion assisted charge identification of the liposome in planar electrophoretic trap with aqueous medium. , 2015, , .		0