List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2739855/publications.pdf Version: 2024-02-01

HENC-EU VIN

#	Article	IF	CITATIONS
1	Overexpression of geranyl diphosphate synthase (<i>PmGPPS1</i>) boosts monoterpene and diterpene production involved in the response to pine wood nematode invasion. Tree Physiology, 2022, 42, 411-424.	3.1	8
2	The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biology, 2022, 23, 14.	8.8	68
3	Transcriptomic and Chemical Analyses Reveal the Hub Regulators of Flower Color Variation from Camellia japonica Bud Sport. Horticulturae, 2022, 8, 129.	2.8	7
4	Comparative Transcriptome Analysis of Flower Senescence of Camellia lutchuensis. Current Genomics, 2022, 23, 66-76.	1.6	3
5	Multi-Approach Analysis Reveals Pathways of Cold Tolerance Divergence in Camellia japonica. Frontiers in Plant Science, 2022, 13, 811791.	3.6	4
6	Comparative Transcriptome and Pigment Analyses Reveal Changes in Gene Expression Associated with Flavonol Metabolism in Yellow Camellia. Forests, 2022, 13, 1094.	2.1	5
7	Two terpene synthases in resistant <scp><i>Pinus massoniana</i></scp> contribute to defence against <i>Bursaphelenchus xylophilus</i> . Plant, Cell and Environment, 2021, 44, 257-274.	5.7	36
8	Alternative Polyadenylation in response to temperature stress contributes to gene regulation in Populus trichocarpa. BMC Genomics, 2021, 22, 53.	2.8	9
9	The complete chloroplast genome of Camellia grijsii, an ornamental shrub with floral aroma. Mitochondrial DNA Part B: Resources, 2021, 6, 748-749.	0.4	1
10	CcBLH6, a bell-like homeodomain-containing transcription factor, regulates the fruit lignification pattern. Planta, 2021, 253, 90.	3.2	7
11	IsoSplitter: identification and characterization of alternative splicing sites without a reference genome. Rna, 2021, 27, 868-875.	3.5	4
12	Flavonoid 3′-hydroxylase of Camellia nitidissima Chi. promotes the synthesis of polyphenols better than flavonoids. Molecular Biology Reports, 2021, 48, 3903-3912.	2.3	9
13	Transcriptome and Degradome Profiling Reveals a Role of miR530 in the Circadian Regulation of Gene Expression in KalanchoA« marnieriana. Cells, 2021, 10, 1526.	4.1	5
14	The complete chloroplast genome of Camellia grijsii †̃zhenzhucha', a variant cultivar with floral aroma. Mitochondrial DNA Part B: Resources, 2021, 6, 2546-2547.	0.4	0
15	Characterization and phylogenetic analysis of the complete chloroplast genome of Camellia chrysanthoides (Theaceae). Mitochondrial DNA Part B: Resources, 2021, 6, 3103-3104.	0.4	0
16	D6 protein kinase in root xylem benefiting resistance to Fusarium reveals infection and defense mechanisms in tung trees. Horticulture Research, 2021, 8, 240.	6.3	2
17	FRONT COVER IMAGE. Plant, Cell and Environment, 2021, 44, i.	5.7	0
18	The complete chloroplast genome of Camellia fluviatilis (Theaceae), a wild oil-Camellia species. Mitochondrial DNA Part B: Resources, 2021, 6, 3511-3512.	0.4	1

#	Article	IF	CITATIONS
19	The Flavonoid Biosynthesis Network in Plants. International Journal of Molecular Sciences, 2021, 22, 12824.	4.1	248
20	Transcriptomic Analysis Reveals Key Candidate Genes Related to Seed Abortion in Chinese Jujube (Ziziphus jujuba Mill.). Current Genomics, 2021, 22, .	1.6	0
21	A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba. Genes, 2020, 11, 48.	2.4	12
22	Overexpression of geranyl diphosphate synthase small subunit 1 (LcGPPS.SSU1) enhances the monoterpene content and biomass. Industrial Crops and Products, 2020, 143, 111926.	5.2	22
23	Genetic diversity in the endangered Camellia nitidissima assessed using transcriptome-based SSR markers. Trees - Structure and Function, 2020, 34, 543-552.	1.9	16
24	Functional Diversification of the Dihydroflavonol 4-Reductase from Camellia nitidissima Chi. in the Control of Polyphenol Biosynthesis. Genes, 2020, 11, 1341.	2.4	9
25	Characterization of the complete chloroplast genome of <i>Camellia yuhsienensis</i> Hu, a resilient shrub with strong floral fragrance. Mitochondrial DNA Part B: Resources, 2020, 5, 2998-2999.	0.4	3
26	Integrated Physiological and Transcriptomic Analyses Reveal a Regulatory Network of Anthocyanin Metabolism Contributing to the Ornamental Value in a Novel Hybrid Cultivar of Camellia japonica. Plants, 2020, 9, 1724.	3.5	8
27	Identification of alternatively spliced gene isoforms and novel noncoding RNAs by single-molecule long-read sequencing in <i>Camellia</i> . RNA Biology, 2020, 17, 966-976.	3.1	13
28	Characterization and phylogenetic significance of the complete chloroplast genome of Camellia Kissii, an economic crop for producing oil. Mitochondrial DNA Part B: Resources, 2020, 5, 362-363.	0.4	5
29	Characterization of the complete chloroplast genome of Camellia brevistyla, an oil-rich and evergreen shrub. Mitochondrial DNA Part B: Resources, 2020, 5, 386-387.	0.4	6
30	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	1.9	16
31	The complete chloroplast genome of Camellia vietnamensis, an economic shrub producing edible seed oil. Mitochondrial DNA Part B: Resources, 2019, 4, 3736-3737.	0.4	2
32	Composition analysis of floral scent within genus Camellia uncovers substantial interspecific variations. Scientia Horticulturae, 2019, 250, 207-213.	3.6	13
33	Identification of Populus Small RNAs Responsive to Mutualistic Interactions With Mycorrhizal Fungi, Laccaria bicolor and Rhizophagus irregularis. Frontiers in Microbiology, 2019, 10, 515.	3.5	17
34	CjPLE, a PLENA-like gene, is a potential regulator of fruit development via activating the FRUITFUL homolog in Camellia. Journal of Experimental Botany, 2019, 70, 3153-3164.	4.8	4
35	Association Genetics Identifies Single Nucleotide Polymorphisms Related to Kernel Oil Content and Quality in <i>Camellia oleifera</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 2547-2562.	5.2	8
36	Ectopic Expression of <i>Litsea cubeba LcMADS20</i> Modifies Silique Architecture. G3: Genes, Genomes, Genetics, 2019, 9, 4139-4147.	1.8	2

#	Article	IF	CITATIONS
37	Overexpression and silent expression of <i>CrGA20ox1</i> from <i>Camellia reticulata</i> †Hentiangao' and its effect on morphological alterations in transgenic tobacco plants. Plant Breeding, 2018, 137, 903-911.	1.9	5
38	Unraveling the Roles of Regulatory Genes during Domestication of Cultivated Camellia: Evidence and Insights from Comparative and Evolutionary Genomics. Genes, 2018, 9, 488.	2.4	11
39	Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. International Journal of Molecular Sciences, 2018, 19, 118.	4.1	56
40	Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave. BMC Genomics, 2018, 19, 588.	2.8	64
41	Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia. Functional and Integrative Genomics, 2018, 18, 659-671.	3.5	14
42	GEsture: an online hand-drawing tool for gene expression pattern search. PeerJ, 2018, 6, e4927.	2.0	2
43	Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis. Scientific Reports, 2017, 7, 382.	3.3	36
44	The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	12.8	159
45	Global gene expression defines faded whorl specification of double flower domestication in Camellia. Scientific Reports, 2017, 7, 3197.	3.3	21
46	Overexpression ofCaAPXInduces Orchestrated Reactive Oxygen Scavenging and Enhances Cold and Heat Tolerances in Tobacco. BioMed Research International, 2017, 2017, 1-15.	1.9	17
47	Comparative Transcriptomics Atlases Reveals Different Gene Expression Pattern Related to Fusarium Wilt Disease Resistance and Susceptibility in Two Vernicia Species. Frontiers in Plant Science, 2016, 7, 1974.	3.6	18
48	Integration of small <scp>RNA</scp> s, degradome and transcriptome sequencing in hyperaccumulator <i>Sedum alfredii</i> uncovers a complex regulatory network and provides insights into cadmium phytoremediation. Plant Biotechnology Journal, 2016, 14, 1470-1483.	8.3	96
49	Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants, 2016, 2, 16178.	9.3	158
50	Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in <i>Camellia</i> during floral organ development. Journal of Experimental Botany, 2016, 67, 2641-2653.	4.8	33
51	Mitigating climate change through managing constructed-microbial communities in agriculture. Agriculture, Ecosystems and Environment, 2016, 216, 304-308.	5.3	56
52	Overexpression of the Gibberellin 2-Oxidase Gene from Camellia lipoensis Induces Dwarfism and Smaller Flowers in Nicotiana tabacum. Plant Molecular Biology Reporter, 2016, 34, 182-191.	1.8	26
53	A roadmap for research on crassulacean acid metabolism (<scp>CAM</scp>) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 2015, 207, 491-504.	7.3	211
54	Development of Agave as a dedicated biomass source: production of biofuels from whole plants. Biotechnology for Biofuels, 2015, 8, 79.	6.2	38

#	Article	IF	CITATIONS
55	GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature. BioMed Research International, 2015, 2015, 1-8.	1.9	2
56	Genome-Wide Identification and Characterization of the <i>LRR-RLK</i> Gene Family in Two <i>Vernicia</i> Species. International Journal of Genomics, 2015, 2015, 1-17.	1.6	7
57	Identification and characterization of NF-YB family genes in tung tree. Molecular Genetics and Genomics, 2015, 290, 2187-2198.	2.1	6
58	Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea. Scientific Reports, 2015, 5, 9729.	3.3	72
59	Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression. BMC Plant Biology, 2014, 14, 288.	3.6	40
60	Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnology Journal, 2014, 12, 1207-1216.	8.3	46
61	Functional Genomics of Drought Tolerance in Bioenergy Crops. Critical Reviews in Plant Sciences, 2014, 33, 205-224.	5.7	25
62	The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication. Molecular Breeding, 2014, 33, 821-834.	2.1	31
63	Functional analyses of a flavonol synthase–like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation. Journal of Biosciences, 2013, 38, 593-604.	1.1	49
64	Overexpression of phosphoenolpyruvate carboxylase from Jatropha curcas increases fatty acid accumulation in Nicotiana tabacum. Acta Physiologiae Plantarum, 2013, 35, 2269-2279.	2.1	12
65	<i>PHOSPHATIDYLSERINE SYNTHASE1</i> is Required for Inflorescence Meristem and Organ Development in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2013, 55, 682-695.	8.5	26
66	SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta, 2013, 237, 15-27.	3.2	33
67	Evolutionary analyses of nonâ€family genes in plants. Plant Journal, 2013, 73, 788-797.	5.7	7
68	NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Research, 2009, 19, 598-611.	12.0	74
69	EUI1, Encoding a Putative Cytochrome P450 Monooxygenase, Regulates Internode Elongation by Modulating Gibberellin Responses in Rice. Plant and Cell Physiology, 2006, 47, 181-191.	3.1	151
70	Molecular Cloning and Expression Analysis of C Function Gene <i>CjPLE</i> in Double Flower Varieties of <i>Camellia japonica</i> . Molecular Plant Breeding, 0, , .	0.0	0
71	Molecular Cloning and Expression Analysis of C Function Gene CjPLE in Double Flower Varieties of <i>Camellia japonica</i> . Molecular Plant Breeding, 0, , .	0.0	0