
Pamela J Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2739094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.	6.6	1,158
2	Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nature Biotechnology, 2008, 26, 941-946.	17.5	793
3	MicroRNAs as master regulators of the plant <i>NB-LRR</i> defense gene family via the production of phased, <i>trans</i> -acting siRNAs. Genes and Development, 2011, 25, 2540-2553.	5.9	668
4	Elucidation of the Small RNA Component of the Transcriptome. Science, 2005, 309, 1567-1569.	12.6	582
5	Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genetics, 2006, 38, 721-725.	21.4	561
6	Nitrate-responsive miR393/ <i>AFB3</i> regulatory module controls root system architecture in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4477-4482.	7.1	556
7	Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. Rna, 2009, 15, 2147-2160.	3.5	525
8	tRNA cleavage is a conserved response to oxidative stress in eukaryotes. Rna, 2008, 14, 2095-2103.	3.5	506
9	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	27.8	460
10	AtXRN4 Degrades mRNA in Arabidopsis and Its Substrates Include Selected miRNA Targets. Molecular Cell, 2004, 15, 173-183.	9.7	369
11	Massive Analysis of Rice Small RNAs: Mechanistic Implications of Regulated MicroRNAs and Variants for Differential Target RNA Cleavage Â. Plant Cell, 2011, 23, 4185-4207.	6.6	341
12	MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Research, 2006, 16, 1276-1288.	5.5	329
13	Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nature Protocols, 2009, 4, 356-362.	12.0	301
14	XRN 5′→3′ exoribonucleases: Structure, mechanisms and functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 590-603.	1.9	290
15	Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant Journal, 2012, 69, 462-474.	5.7	289
16	Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications, 2014, 5, 3722.	12.8	224
17	Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4951-4956.	7.1	218
18	Construction of small RNA cDNA libraries for deep sequencing. Methods, 2007, 43, 110-117.	3.8	216

Pamela J Green

#	Article	IF	CITATIONS
19	Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the <i>mop1-1</i> mutant. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14958-14963.	7.1	208
20	ldentification of unstable transcripts in Arabidopsis by cDNA microarray analysis: Rapid decay is associated with a group of touch- and specific clock-controlled genes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11513-11518.	7.1	200
21	Marek's Disease Virus Encodes MicroRNAs That Map to <i>meq</i> and the Latency-Associated Transcript. Journal of Virology, 2006, 80, 8778-8786.	3.4	196
22	Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in <i>Chlamydomonas</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3906-3911.	7.1	122
23	Sequence Conservation and Differential Expression of Marek's Disease Virus MicroRNAs. Journal of Virology, 2008, 82, 12213-12220.	3.4	107
24	Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Research, 2015, 43, 4121-4132.	14.5	104
25	Circadian Control of Messenger RNA Stability. Association with a Sequence-Specific Messenger RNA Decay Pathway. Plant Physiology, 2005, 138, 2374-2385.	4.8	98
26	Distinct extremely abundant siRNAs associated with cosuppression in petunia. Rna, 2009, 15, 1965-1970.	3.5	93
27	Identification of SMC6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Research, 2015, 43, 309-323.	14.5	90
28	The role of rice microRNAs in abiotic stress responses. Journal of Plant Biology, 2013, 56, 187-197.	2.1	83
29	Diamonds in the rough: mRNA-like non-coding RNAs. Trends in Plant Science, 2008, 13, 329-334.	8.8	80
30	Evidence that XRN4, an <i>Arabidopsis</i> homolog of exoribonuclease XRN1, preferentially impacts transcripts with certain sequences or in particular functional categories. Rna, 2011, 17, 501-511.	3.5	76
31	Differential expression of <scp>miRNAs</scp> and their target genes in senescing leaves and siliques: insights from deep sequencing of small <scp>RNAs</scp> and cleaved target <scp>RNAs</scp> . Plant, Cell and Environment, 2015, 38, 188-200.	5.7	69
32	Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biology, 2013, 14, R145.	9.6	67
33	Sweating the small stuff: microRNA discovery in plants. Current Opinion in Biotechnology, 2006, 17, 139-146.	6.6	63
34	AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene, 2004, 328, 95-102.	2.2	61
35	mRNA Degradation Machinery in Plants. Journal of Plant Biology, 2009, 52, 114-124.	2.1	61
36	Comprehensive Investigation of MicroRNAs Enhanced by Analysis of Sequence Variants, Expression Patterns, ARGONAUTE Loading, and Target Cleavage. Plant Physiology, 2013, 162, 1225-1245.	4.8	61

Pamela J Green

#	Article	IF	CITATIONS
37	MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. Virology, 2009, 388, 128-136.	2.4	56
38	Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of <i>Limulus polyphemus</i> (Arthropoda: Chelicerata). Genome Biology and Evolution, 2016, 8, 1571-1589.	2.5	50
39	Methods for Isolation of Total RNA to Recover miRNAs and Other Small RNAs from Diverse Species. Methods in Molecular Biology, 2010, 592, 31-50.	0.9	39
40	Murine Oviductosomes (OVS) microRNA profiling during the estrous cycle: Delivery of OVS-borne microRNAs to sperm where miR-34c-5p localizes at the centrosome. Scientific Reports, 2018, 8, 16094.	3.3	35
41	AtCCR4a and AtCCR4b are Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana. Plant and Cell Physiology, 2015, 56, 863-874.	3.1	32
42	RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Research, 2019, 47, 9216-9230.	14.5	30
43	Methods for validation of miRNA sequence variants and the cleavage of their targets. Methods, 2012, 58, 135-143.	3.8	22
44	MAJOR DEVELOPMENTAL REGULATORS AND THEIR EXPRESSION IN TWO CLOSELY RELATED SPECIES OF <i>PORPHYRA</i> (RHODOPHYTA) ¹ . Journal of Phycology, 2012, 48, 883-896.	2.3	19
45	An miRNA Expression Signature for the Human Colonic Stem Cell Niche Distinguishes Malignant from Normal Epithelia. Cancer Research, 2017, 77, 3778-3790.	0.9	18
46	Analysis of Brachypodium miRNA targets: evidence for diverse control during stress and conservation in bioenergy crops. BMC Genomics, 2018, 19, 547.	2.8	17
47	Analysis of XRN Orthologs by Complementation of Yeast Mutants and Localization of XRN–GFP Fusion Proteins. Methods in Enzymology, 2001, 342, 269-282.	1.0	10
48	Integrative Analysis of Gene Expression and miRNAs Reveal Biological Pathways Associated with Bud Paradormancy and Endodormancy in Grapevine. Plants, 2021, 10, 669.	3.5	5
49	MicroRNAs Associated with Environmental Stress in Arabidopsis. FASEB Journal, 2010, 24, 500.1.	0.5	0
50	Analysis of Small RNAs Associated with Plant Senescence. FASEB Journal, 2012, 26, 952.7.	0.5	0
51	The RNA World: Identifying miRNA-Target RNA Pairs as Possible Missing Links in Multi-Network Models. , 0, , 229-242.		0