List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2738504/publications.pdf Version: 2024-02-01

ΔΙΔΝ ΗΔΩΤΙΝΟΣ

#	Article	IF	CITATIONS
1	Directed movement changes coexistence outcomes in heterogeneous environments. Ecology Letters, 2022, 25, 366-377.	3.0	6
2	Noiseâ€induced versus intrinsic oscillation in ecological systems. Ecology Letters, 2022, 25, 814-827.	3.0	5
3	Occupancy times for time-dependent stage-structured models. Journal of Mathematical Biology, 2022, 84, 16.	0.8	1
4	Optimal management of stochastic invasion in a metapopulation with Allee effects. Journal of Theoretical Biology, 2022, 549, 111221.	0.8	1
5	Synchronization within synchronization: transients and intermittency in ecological networks. National Science Review, 2021, 8, nwaa269.	4.6	9
6	The role of between-patch dynamics in a metapopulation: a discrete-time modelling approach. Theoretical Ecology, 2021, 14, 161-172.	0.4	0
7	Density dependent Resource Budget Model for alternate bearing. Journal of Theoretical Biology, 2021, 509, 110498.	0.8	7
8	Catastrophes, connectivity and Allee effects in the design of marine reserve networks. Oikos, 2021, 130, 366-376.	1.2	7
9	Simple discreteâ€ŧime metapopulation models of patch occupancy. Oikos, 2021, 130, 310-320.	1.2	1
10	Management implications of long transients in ecological systems. Nature Ecology and Evolution, 2021, 5, 285-294.	3.4	44
11	The Role of Stochasticity in Noise-Induced Tipping Point Cascades: A Master Equation Approach. Bulletin of Mathematical Biology, 2021, 83, 53.	0.9	4
12	Sharp boundary formation and invasion between spatially adjacent periodical cicada broods. Journal of Theoretical Biology, 2021, 515, 110600.	0.8	3
13	Initial abundance and stochasticity influence competitive outcome in communities. Journal of Animal Ecology, 2021, 90, 1691-1700.	1.3	6
14	Projecting the timescale of initial increase in fishery yield after implementation of marine protected areas. ICES Journal of Marine Science, 2021, 78, 1860-1871.	1.2	10
15	Spatial heterogeneity of mortality and diffusion rates determines larval delivery to adult habitats for coastal marine populations. Theoretical Ecology, 2021, 14, 525-541.	0.4	5
16	Effects of stochasticity on the length and behaviour of ecological transients. Journal of the Royal Society Interface, 2021, 18, 20210257.	1.5	25
17	Tipping Cascades in a Multi-patch System with Noise and Spatial Coupling. Bulletin of Mathematical Biology, 2021, 83, 112.	0.9	1
18	Towards Building a Sustainable Future: Positioning Ecological Modelling for Impact in Ecosystems Management. Bulletin of Mathematical Biology, 2021, 83, 107.	0.9	14

#	Article	IF	CITATIONS
19	Larvae of coastal marine invertebrates enhance their settling success or benefits of planktonic development – but not both – through vertical swimming. Oikos, 2021, 130, 2260-2278.	1.2	5
20	Transients in ecology: stochasticity, management, and understanding. Theoretical Ecology, 2021, 14, 623-624.	0.4	6
21	Long transients in ecology: Theory and applications. Physics of Life Reviews, 2020, 32, 1-40.	1.5	126
22	Advancing an interdisciplinary framework to study seed dispersal ecology. AoB PLANTS, 2020, 12, plz048.	1.2	30
23	Using ecological niche theory to avoid uninformative biodiversity surrogates. Ecological Indicators, 2020, 108, 105692.	2.6	8
24	Long-term predator–prey cycles finally achieved in the lab. Nature, 2020, 577, 172-173.	13.7	6
25	Seasonality in ecology: Progress and prospects in theory. Ecological Complexity, 2020, 44, 100867.	1.4	59
26	Interspecific competition slows range expansion and shapes range boundaries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26854-26860.	3.3	36
27	Long living transients: Enfant terrible of ecological theory?. Physics of Life Reviews, 2020, 32, 55-58.	1.5	2
28	Spatial Dynamics and Spread of Ecosystem Engineers: Two Patch Analysis. Bulletin of Mathematical Biology, 2020, 82, 149.	0.9	8
29	Mutualistic networks emerging from adaptive niche-based interactions. Nature Communications, 2020, 11, 5470.	5.8	25
30	Dynamical Ising model of spatially coupled ecological oscillators. Journal of the Royal Society Interface, 2020, 17, 20200571.	1.5	7
31	Community context and dispersal stochasticity drive variation in spatial spread. Journal of Animal Ecology, 2020, 89, 2657-2664.	1.3	5
32	Forecasting resilience profiles of the run-up to regime shifts in nearly-one-dimensional systems. Journal of the Royal Society Interface, 2020, 17, 20200566.	1.5	6
33	Multiple Attractors and Long Transients in Spatially Structured Populations with an Allee Effect. Bulletin of Mathematical Biology, 2020, 82, 82.	0.9	13
34	Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere, 2019, 10, e02799.	1.0	8
35	Setting ecological expectations for adaptive management of marine protected areas. Journal of Applied Ecology, 2019, 56, 2376-2385.	1.9	45
36	Success and failure of ecological management is highly variable in an experimental test. Proceedings of the United States of America, 2019, 116, 23169-23173.	3.3	8

#	Article	IF	CITATIONS
37	Editorial: A look back and to the future with classic papers in theoretical ecology. Theoretical Ecology, 2019, 12, 263-263.	0.4	0
38	Harnessing tipping points in complex ecological networks. Journal of the Royal Society Interface, 2019, 16, 20190345.	1.5	32
39	How to combine two methods to restore populations cost effectively. Ecosphere, 2019, 10, e02552.	1.0	5
40	Setting expected timelines of fished population recovery for the adaptive management of a marine protected area network. Ecological Applications, 2019, 29, e01949.	1.8	57
41	Rapid changes in seed dispersal traits may modify plant responses to global change. AoB PLANTS, 2019, 11, plz020.	1.2	32
42	Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AoB PLANTS, 2019, 11, plz016.	1.2	71
43	A Hybrid Model for the Population Dynamics of Periodical Cicadas. Bulletin of Mathematical Biology, 2019, 81, 1122-1142.	0.9	10
44	When can competition and dispersal lead to checkerboard distributions?. Journal of Animal Ecology, 2019, 88, 269-276.	1.3	21
45	Resilience in a two-population system: interactions between Allee effects and connectivity. Theoretical Ecology, 2018, 11, 281-289.	0.4	5
46	Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1825-1830.	3.3	36
47	Predicting tipping points in mutualistic networks through dimension reduction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E639-E647.	3.3	111
48	Slow treatment promotes control of harmful species by multiple agents. Conservation Letters, 2018, 11, e12568.	2.8	7
49	Editorial. Bulletin of Mathematical Biology, 2018, 80, 3069-3070.	0.9	4
50	Habitat suitability estimated by niche models is largely unrelated to species abundance. Global Ecology and Biogeography, 2018, 27, 1448-1456.	2.7	90
51	Transient phenomena in ecology. Science, 2018, 361, .	6.0	359
52	Surrogates Underpin Ecological Understanding and Practice. BioScience, 2018, 68, 640-642.	2.2	8
53	Multiple data sources and freely available code is critical when investigating species distributions and diversity: a response to Knouft (2018). Ecology Letters, 2018, 21, 1423-1424.	3.0	1
54	Competition and Stragglers as Mediators of Developmental Synchrony in Periodical Cicadas. American Naturalist, 2018, 192, 479-489.	1.0	11

#	Article	IF	CITATIONS
55	Listing and Delisting Thresholds under the Endangered Species Act. American Journal of Agricultural Economics, 2017, 99, 549-570.	2.4	4
56	Species are not most abundant in the centre of their geographic range or climatic niche. Ecology Letters, 2017, 20, 1526-1533.	3.0	172
57	Marine reserves solve an important bycatch problem in fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8927-8934.	3.3	45
58	Critical fluctuations of noisy period-doubling maps. European Physical Journal B, 2017, 90, 1.	0.6	2
59	Network Governance for Invasive Species Management. Conservation Letters, 2017, 10, 699-707.	2.8	38
60	Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications. Biogeosciences, 2017, 14, 145-161.	1.3	91
61	Models Involving Differential and Integral Equations Appropriate for Describing a Temperature Dependent Predator-Prey Mite Ecosystem on Apples. , 2017, , 255-277.		1
62	Reply to Hilborn: Role of marine reserves depends on assumptions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10611.	3.3	1
63	Ecosystem models for fisheries management: finding the sweet spot. Fish and Fisheries, 2016, 17, 101-125.	2.7	188
64	Optimal management of a stochastically varying population when policy adjustment is costly. Ecological Applications, 2016, 26, 808-817.	1.8	43
65	Stability and distribution of predator–prey systems: local and regional mechanisms and patterns. Ecology Letters, 2016, 19, 279-288.	3.0	12
66	Inequalities on the spectral abscissa for matrices arising in a stage-structured population model. Linear Algebra and Its Applications, 2016, 494, 90-104.	0.4	0
67	Introduction to the special issue: theory of food webs. Theoretical Ecology, 2016, 9, 1-2.	0.4	8
68	Fitting stateâ€space integral projection models to sizeâ€structured time series data to estimate unknown parameters. Ecological Applications, 2016, 26, 2677-2694.	1.8	19
69	Autocorrelated environmental variation and the establishment of invasive species. Oikos, 2016, 125, 1027-1034.	1.2	22
70	A typology of timeâ€scale mismatches and behavioral interventions to diagnose and solve conservation problems. Conservation Biology, 2016, 30, 42-49.	2.4	31
71	Dynamic Range Size Analysis of Territorial Animals: An Optimality Approach. American Naturalist, 2016, 188, 460-474.	1.0	19
72	Timescales and the management of ecological systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14568-14573.	3.3	57

#	Article	IF	CITATIONS
73	Editorial. Bulletin of Mathematical Biology, 2016, 78, 2303-2303.	0.9	Ο
74	Transit times and mean ages for nonautonomous and autonomous compartmental systems. Journal of Mathematical Biology, 2016, 73, 1379-1398.	0.8	40
75	The duality of stability: towards a stochastic theory of species interactions. Theoretical Ecology, 2016, 9, 477-485.	0.4	16
76	Editorial. Bulletin of Mathematical Biology, 2016, 78, 1-3.	0.9	4
77	Eradication of Invading Insect Populations: From Concepts to Applications. Annual Review of Entomology, 2016, 61, 335-352.	5.7	144
78	Emergent long-range synchronization of oscillating ecological populations without external forcing described by Ising universality. Nature Communications, 2015, 6, 6664.	5.8	27
79	Spatial Heterogeneity in Soil Microbes Alters Outcomes of Plant Competition. PLoS ONE, 2015, 10, e0125788.	1.1	32
80	Plant reproduction and environmental noise: How do plants do it?. Journal of Theoretical Biology, 2015, 371, 137-144.	0.8	10
81	Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model. Ecological Modelling, 2015, 313, 137-148.	1.2	41
82	Connectivity, passability and heterogeneity interact to determine fish population persistence in river networks. Journal of the Royal Society Interface, 2015, 12, 20150435.	1.5	21
83	Inferring topology from dynamics in spatial networks. Theoretical Ecology, 2015, 8, 15-21.	0.4	11
84	Cohort resonance: a significant component of fluctuations in recruitment, egg production, and catch of fished populations. ICES Journal of Marine Science, 2014, 71, 2158-2170.	1.2	49
85	Stochastic models reveal conditions for cyclic dominance in sockeye salmon populations. Ecological Monographs, 2014, 84, 69-90.	2.4	17
86	Persistence and management of spatially distributed populations. Population Ecology, 2014, 56, 21-26.	0.7	18
87	Optimal approaches for balancing invasive species eradication and endangered species management. Science, 2014, 344, 1028-1031.	6.0	92
88	Optimal control of population recovery – the role of economic restoration threshold. Ecology Letters, 2014, 17, 28-35.	3.0	13
89	Sharp changes in resource availability may induce spatial nearly periodic population abundances. Ecological Complexity, 2014, 19, 80-83.	1.4	3
90	Mathematical analysis of coral reef models. Journal of Mathematical Analysis and Applications, 2014, 416, 352-373.	0.5	14

#	Article	IF	CITATIONS
91	Temporal scales of resource variability: Effects on population dynamics of structured populations. Ecological Complexity, 2014, 18, 6-9.	1.4	6
92	Preface for the special issue of Mathematical Biosciences and Engineering, BIOCOMP 2012. Mathematical Biosciences and Engineering, 2014, 11, i-ii.	1.0	0
93	Editorial: special issue on regime shifts and tipping points in ecology. Theoretical Ecology, 2013, 6, 253-254.	0.4	17
94	Transient responses of fished populations to marine reserve establishment. Conservation Letters, 2013, 6, 180-191.	2.8	67
95	Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecology Letters, 2013, 16, 1079-1087.	3.0	172
96	Early warning signals: the charted and uncharted territories. Theoretical Ecology, 2013, 6, 255-264.	0.4	154
97	From patterns to predictions. Nature, 2013, 493, 157-158.	13.7	96
98	Editorial for the special issue of mathematical biosciences, BIOCOMP 2012. Mathematical Biosciences, 2013, 245, 1.	0.9	0
99	Evidence for and against the existence of alternate attractors on coral reefs. Oikos, 2013, 122, 481-491.	1.2	98
100	Stochastic Dispersal and Population Persistence in Marine Organisms. American Naturalist, 2013, 182, 271-282.	1.0	47
101	No early warning signals for stochastic transitions: insights from large deviation theory. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131372.	1.2	32
102	Synchronization-induced persistence versus selection for habitats in spatially coupled ecosystems. Journal of the Royal Society Interface, 2013, 10, 20130559.	1.5	6
103	Synchronized Dynamics of <i>Tipula paludosa</i> Metapopulation in a Southwestern Scotland Agroecosystem: Linking Pattern to Process. American Naturalist, 2013, 182, 393-409.	1.0	15
104	Early warning signals and the prosecutor's fallacy. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4734-4739.	1.2	99
105	Temporally varying resources amplify the importance of resource input in ecological populations. Biology Letters, 2012, 8, 1067-1069.	1.0	24
106	Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2807-2815.	1.2	45
107	Quantifying limits to detection of early warning for critical transitions. Journal of the Royal Society Interface, 2012, 9, 2527-2539.	1.5	157
108	Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model. Journal of Geophysical Research, 2012, 117, .	3.3	19

#	Article	IF	CITATIONS
109	Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.	13.7	1,518
110	Unravelling stability-complexity relationships. Journal of Animal Ecology, 2012, 81, 513-515.	1.3	0
111	The effect of fishing on hysteresis in Caribbean coral reefs. Theoretical Ecology, 2012, 5, 105-114.	0.4	63
112	Forward to special issue. Journal of Mathematical Biology, 2012, 64, 611-612.	0.8	0
113	Linking models with monitoring data for assessing performance of noâ€ŧake marine reserves. Frontiers in Ecology and the Environment, 2011, 9, 390-399.	1.9	69
114	A model-based approach to determine the long-term effects of multiple interacting stressors on coral reefs. , 2011, 21, 2722-2733.		36
115	Testing Moran's theorem in an agroecosystem. Oikos, 2011, 120, 1434-1440.	1.2	23
116	The roles of the Moran effect and dispersal in synchronizing oscillating populations. Journal of Theoretical Biology, 2011, 289, 237-246.	0.8	44
117	The effect of time delays on Caribbean coral–algal interactions. Journal of Theoretical Biology, 2011, 273, 37-43.	0.8	15
118	Introduction to the Simon Levin 70th birthday special issue of theoretical ecology. Theoretical Ecology, 2011, 4, 111-111.	0.4	1
119	Multivariate Moran Process with Lotka-Volterra Phenomenology. Physical Review Letters, 2011, 107, 228101.	2.9	16
120	Paradoxical persistence through mixed-system dynamics: towards a unified perspective of reversal behaviours in evolutionary ecology. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1281-1290.	1.2	35
121	Optimizing for multiple species and multiple values: tradeoffs inherent in ecosystemâ€based fisheries management. Conservation Letters, 2011, 4, 21-30.	2.8	59
122	Importance of age structure in models of the response of upper trophic levels to fishing and climate change. ICES Journal of Marine Science, 2011, 68, 1270-1283.	1.2	36
123	Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling. Theoretical Ecology, 2010, 3, 53-63.	0.4	18
124	Theoretical Ecology: Continued growth and success. Theoretical Ecology, 2010, 3, 1-1.	0.4	1
125	Frequency responses of age-structured populations: Pacific salmon as an example. Theoretical Population Biology, 2010, 78, 239-249.	0.5	38
126	Cost-effective management of invasive species using linear-quadratic control. Ecological Economics, 2010, 69, 519-527.	2.9	76

#	Article	IF	CITATIONS
127	Regime shifts in ecological systems can occur with no warning. Ecology Letters, 2010, 13, 464-472.	3.0	265
128	Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecology Letters, 2010, 13, 528-541.	3.0	252
129	Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Marine Ecology - Progress Series, 2010, 398, 49-67.	0.9	114
130	Timescales, dynamics, and ecological understanding. Ecology, 2010, 91, 3471-3480.	1.5	132
131	Disentangling trophic interactions inside a Caribbean marine reserve. , 2010, 20, 1979-1992.		35
132	Highly Variable Spread Rates in Replicated Biological Invasions: Fundamental Limits to Predictability. Science, 2009, 325, 1536-1539.	6.0	170
133	The role of large environmental noise in masting: General model and example from pistachio trees. Journal of Theoretical Biology, 2009, 259, 701-713.	0.8	43
134	Theoretical ecology: a successful first year and a bright future for a new journal. Theoretical Ecology, 2009, 2, 1-2.	0.4	0
135	Small Heterogeneity Has Large Effects on Synchronization of Ecological Oscillators. Bulletin of Mathematical Biology, 2009, 71, 130-144.	0.9	35
136	Editor's choice: Disease dynamics in marine metapopulations: modelling infectious diseases on coral reefs. Journal of Applied Ecology, 2009, 46, 621-631.	1.9	42
137	The tragedy of the reviewer commons*. Ecology Letters, 2009, 12, 2-4.	3.0	64
138	Spatio-temporal covariability in coho salmon (Oncorhynchus kisutch) survival, from California to southeast Alaska. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 2570-2578.	0.6	24
139	Ecosystem Engineers: Feedback and Population Dynamics. American Naturalist, 2009, 173, 488-498.	1.0	71
140	A reserve paradox: introduced heterogeneity may increase regional invasibility. Conservation Letters, 2009, 2, 115-122.	2.8	20
141	II.3 Biological Chaos and Complex Dynamics. , 2009, , 172-176.		1
142	The impact of ecosystem connectivity on coral reef resilience. Journal of Applied Ecology, 2008, 45, 854-862.	1.9	149
143	Sudden Shifts in Ecological Systems: Intermittency and Transients in the Coupled Ricker Population Model. Bulletin of Mathematical Biology, 2008, 70, 1013-1031.	0.9	25
144	Editorial – an ecological theory journal at last. Theoretical Ecology, 2008, 1, 1-4.	0.4	6

#	Article	IF	CITATIONS
145	Extinction risk depends strongly on factors contributing to stochasticity. Nature, 2008, 454, 100-103.	13.7	443
146	Coral Reef Habitats as Surrogates of Species, Ecological Functions, and Ecosystem Services. Conservation Biology, 2008, 22, 941-951.	2.4	114
147	When can dispersal synchronize populations?. Theoretical Population Biology, 2008, 73, 395-402.	0.5	65
148	Persistence of mobile species in marine protected areas. Fisheries Research, 2008, 91, 69-78.	0.9	9
149	Strong effect of dispersal network structure on ecological dynamics. Nature, 2008, 456, 792-794.	13.7	190
150	Balancing the engineer—environment equation: The current legacy. Theoretical Ecology Series, 2007, 4, 253-273.	0.1	3
151	20 Management and ecosystem engineers: Current knowledge and future challenges. Theoretical Ecology Series, 2007, 4, 387-393.	0.1	1
152	A Perfect Storm: The Combined Effects on Population Fluctuations of Autocorrelated Environmental Noise, Age Structure, and Density Dependence. American Naturalist, 2007, 169, 673-683.	1.0	42
153	Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution, 2007, 22, 465-471.	4.2	774
154	Connecting Places: The Ecological Consequences of Dispersal in the Sea. Oceanography, 2007, 20, 90-99.	0.5	142
155	Minimizing invader impacts: Striking the right balance between removal and restoration. Journal of Theoretical Biology, 2007, 249, 437-444.	0.8	14
156	Thresholds and the resilience of Caribbean coral reefs. Nature, 2007, 450, 98-101.	13.7	724
157	Invasion in a heterogeneous world: resistance, coexistence or hostile takeover?. Ecology Letters, 2007, 10, 77-94.	3.0	343
158	Ecosystem engineering in space and time. Ecology Letters, 2007, 10, 153-164.	3.0	488
159	The anatomy of predator–prey dynamics in a changing climate. Journal of Animal Ecology, 2007, 76, 1037-1044.	1.3	75
160	Spontaneous Patchiness in a Host-Parasitoid Integrodifference Model. Bulletin of Mathematical Biology, 2007, 69, 2693-2709.	0.9	2
161	A simple approach to optimal control of invasive species. Theoretical Population Biology, 2006, 70, 431-435.	0.5	69
162	Effects of variable winds on biological productivity on continental shelves in coastal upwelling systems. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 3116-3140.	0.6	80

#	Article	IF	CITATIONS
163	Using ecosystem engineers to restore ecological systems. Trends in Ecology and Evolution, 2006, 21, 493-500.	4.2	371
164	A simple persistence condition for structured populations. Ecology Letters, 2006, 9, 846-852.	3.0	19
165	Use of lidar to study changes associated with Spartina invasion in San Francisco Bay marshes. Remote Sensing of Environment, 2006, 100, 295-306.	4.6	131
166	WHEN ARE NO-TAKE ZONES AN ECONOMICALLY OPTIMAL FISHERY MANAGEMENT STRATEGY?. , 2006, 16, 1643-1659.		103
167	Explaining the explosion: modelling hybrid invasions. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1385-1389.	1.2	47
168	Persistence of spatial populations depends on returning home. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6067-6072.	3.3	270
169	Conservation Dynamics of Marine Metapopulations with Dispersing Larvae. , 2006, , 411-429.		5
170	Open Access: Who Will Pay the Price?. Frontiers in Ecology and the Environment, 2005, 3, 222.	1.9	0
171	Allee effects in biological invasions. Ecology Letters, 2005, 8, 895-908.	3.0	636
172	Quantitative Bioscience for the 21st Century. BioScience, 2005, 55, 511.	2.2	25
173	Widening the window of persistence in seasonal pathogen–host systems. Theoretical Population Biology, 2005, 68, 267-276.	0.5	3
174	Complexity in Ecology and Conservation: Mathematical, Statistical, and Computational Challenges. BioScience, 2005, 55, 501.	2.2	115
175	UNSTRUCTURED MODELS IN ECOLOGY: PAST, PRESENT, AND FUTURE. , 2005, , 9-29.		5
176	CONSEQUENCES OF AN ALLEE EFFECT IN THE INVASION OF A PACIFIC ESTUARY BY SPARTINA ALTERNIFLORA. Ecology, 2004, 85, 3254-3266.	1.5	85
177	Detritus, trophic dynamics and biodiversity. Ecology Letters, 2004, 7, 584-600.	3.0	948
178	The spatial spread of invasions: new developments in theory and evidence. Ecology Letters, 2004, 8, 91-101.	3.0	727
179	Demographic and environmental stochasticity in predator–prey metapopulation dynamics. Journal of Animal Ecology, 2004, 73, 1043-1055.	1.3	72
180	Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. Journal of Applied Ecology, 2004, 41, 1049-1057.	1.9	223

#	Article	IF	CITATIONS
181	Invasive engineers. Ecological Modelling, 2004, 178, 335-347.	1.2	145
182	Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology, 2004, 66, 583-594.	0.9	21
183	Invasive engineers. Ecological Modelling, 2004, 178, 335-335.	1.2	5
184	Transients: the key to long-term ecological understanding?. Trends in Ecology and Evolution, 2004, 19, 39-45.	4.2	510
185	Toward a Dynamic Metacommunity Approach to Marine Reserve Theory. BioScience, 2004, 54, 1003.	2.2	77
186	Limiting Relationships Between Selection and Recombination. Bulletin of Mathematical Biology, 2003, 65, 129-141.	0.9	0
187	The effects of spawning age distribution on salmon persistence in fluctuating environments. Journal of Animal Ecology, 2003, 72, 736-744.	1.3	9
188	Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography, 2003, 12, 245-259.	0.9	65
189	Resistance may be futile: dispersal scales and selection for disease resistance in competing plants. Journal of Theoretical Biology, 2003, 222, 373-388.	0.8	17
190	Uniform vertical transmission and selection in a host–symbiont system. Non-random symbiont distribution generates apparent differential selection. Journal of Theoretical Biology, 2003, 225, 517-530.	0.8	1
191	POPULATION MODELS FOR MARINE RESERVE DESIGN: A RETROSPECTIVE AND PROSPECTIVE SYNTHESIS. , 2003, 13, 47-64.		309
192	Spatial mechanisms for coexistence of species sharing a common natural enemy. Theoretical Population Biology, 2003, 64, 431-438.	0.5	27
193	Metapopulation Persistence with Age-Dependent Disturbance or Succession. Science, 2003, 301, 1525-1526.	6.0	62
194	COMPARING DESIGNS OF MARINE RESERVES FOR FISHERIES AND FOR BIODIVERSITY. , 2003, 13, 65-70.		189
195	PRINCIPLES FOR THE DESIGN OF MARINE RESERVES. , 2003, 13, 25-31.		335
196	MATHEMATICS AND BIOLOGY: A Bright Future for Biologists and Mathematicians?. Science, 2003, 299, 2003-2004.	6.0	43
197	The Effects of Small Dispersal Rates on Extinction Times in Structured Metapopulation Models. American Naturalist, 2002, 160, 389-402.	1.0	77
198	The Effects of Dispersal Patterns on Marine Reserves: Does the Tail Wag the Dog?. Theoretical Population Biology, 2002, 61, 297-309.	0.5	142

#	Article	IF	CITATIONS
199	The Impact of Resource Limitation and the Phenology of Parasitoid Attack on the Duration of Insect Herbivore Outbreaks. Theoretical Population Biology, 2002, 62, 259-269.	0.5	46
200	FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR. Ecological Monographs, 2002, 72, 57-76.	2.4	372
201	Consumer movement through differentially subsidized habitats creates a spatial food web with unexpected results. Ecology Letters, 2002, 5, 329-332.	3.0	16
202	FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR. , 2002, 72, 57.		6
203	Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecology Letters, 2001, 4, 144-150.	3.0	339
204	Transient dynamics and persistence of ecological systems. Ecology Letters, 2001, 4, 215-220.	3.0	213
205	Dimensional Approaches to Scaling Experimental Ecosystems: Designing Mousetraps to Catch Elephants. American Naturalist, 2001, 157, 324-333.	1.0	55
206	Population Outbreaks in a Discrete World. Theoretical Population Biology, 2000, 57, 97-108.	0.5	38
207	Synchronicity: differential responses to vaccination illuminate dynamics. Trends in Ecology and Evolution, 2000, 15, 129-130.	4.2	0
208	ECOLOGY: The Lion and the Lamb Find Closure. , 2000, 290, 1712-1713.		2
209	Outbreaks of insects: a dynamic approach. , 1999, , 206-216.		2
210	Clobal dispersal reduces local diversity. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2067-2070.	1.2	13
211	Exploring stable pattern formation in models of tussock moth populations. Journal of Animal Ecology, 1999, 68, 94-107.	1.3	40
212	Habitat Loss, Fragmentation, and Restoration. Restoration Ecology, 1999, 7, 309-315.	1.4	183
213	Learning, Host Fidelity, and the Stability of Hostâ€Parasitoid Communities. American Naturalist, 1999, 153, 295-301.	1.0	28
214	Equivalence in Yield from Marine Reserves and Traditional Fisheries Management. Science, 1999, 284, 1537-1538.	6.0	259
215	Weak trophic interactions and the balance of nature. Nature, 1998, 395, 794-798.	13.7	1,338
216	Coevolutionary Chase in Two-species Systems with Applications to Mimicry. Journal of Theoretical Biology, 1998, 191, 415-427.	0.8	110

#	Article	IF	CITATIONS
217	Population size dependence, competitive coexistence and habitat destruction. Journal of Animal Ecology, 1998, 67, 446-453.	1.3	20
218	Trophic cascades and trophic trickles in pelagic food webs. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 205-209.	1.2	69
219	Population Biology. , 1997, , .		146
220	Density Dependence and Age Structure: Nonlinear Dynamics and Population Behavior. American Naturalist, 1997, 149, 247-269.	1.0	60
221	Stochastic Dynamics and Deterministic Skeletons: Population Behavior of Dungeness Crab. Science, 1997, 276, 1431-1435.	6.0	189
222	Re–evaluating the omnivory–stability relationship in food webs. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1249-1254.	1.2	328
223	Unexpected spatial patterns in an insect outbreak match a predator diffusion model. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1837-1840.	1.2	46
224	Mathematical and Computational Challenges in Population Biology and Ecosystems Science. Science, 1997, 275, 334-343.	6.0	351
225	Density Dependence: Are We Searching at the Wrong Spatial Scale?. Journal of Animal Ecology, 1996, 65, 556.	1.3	155
226	Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology and Evolution, 1996, 11, 180-183.	4.2	249
227	Models of spatial spread: A synthesis. Biological Conservation, 1996, 78, 143-148.	1.9	87
228	Reply from S. Harrison and A. Hastings. Trends in Ecology and Evolution, 1996, 11, 299.	4.2	1
229	Founder Effect Speciation: A Theoretical Reassessment. American Naturalist, 1996, 147, 466-491.	1.0	113
230	Models of Spatial Spread: Is the Theory Complete?. Ecology, 1996, 77, 1675-1679.	1.5	66
231	What Equilibrium Behavior of Lotka-Volterra Models Does Not Tell Us About Food Webs. , 1996, , 211-217.		11
232	Chaos and scale. Trends in Ecology and Evolution, 1995, 10, 335.	4.2	3
233	A metapopulation model with population jumps of varying sizes. Mathematical Biosciences, 1995, 128, 285-298.	0.9	10
234	Maintenance of multilocus variability under strong stabilizing selection. Journal of Mathematical Biology, 1994, 32, 287-302.	0.8	23

#	Article	IF	CITATIONS
235	Chaos in three species food chains. Journal of Mathematical Biology, 1994, 32, 427-451.	0.8	216
236	Metapopulation Dynamics and Genetics. Annual Review of Ecology, Evolution, and Systematics, 1994, 25, 167-188.	6.7	341
237	Persistence of Transients in Spatially Structured Ecological Models. Science, 1994, 263, 1133-1136.	6.0	308
238	Chaos in one-predator, two-prey models: cGeneral results from bifurcation theory. Mathematical Biosciences, 1994, 122, 221-233.	0.9	81
239	The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations. Deep-Sea Research Part II: Topical Studies in Oceanography, 1994, 41, 107-145.	0.6	101
240	A QUANTITATIVE-GENETIC MODEL FOR SELECTION ON DEVELOPMENTAL NOISE. Evolution; International Journal of Organic Evolution, 1994, 48, 1478-1486.	1.1	86
241	Conservation and Spatial Structure: Theoretical Approaches. Lecture Notes in Biomathematics, 1994, , 494-503.	0.3	6
242	Chaos in Ecology: Is Mother Nature a Strange Attractor?. Annual Review of Ecology, Evolution, and Systematics, 1993, 24, 1-33.	6.7	457
243	Complex Interactions Between Dispersal and Dynamics: Lessons From Coupled Logistic Equations. Ecology, 1993, 74, 1362-1372.	1.5	409
244	Age dependent dispersal is not a simple process: Density dependence, stability, and chaos. Theoretical Population Biology, 1992, 41, 388-400.	0.5	60
245	Second-order approximations for selection coefficients at polygenic loci. Journal of Mathematical Biology, 1992, 30, 379-88.	0.8	1
246	Age-Dependent Predation Model of Black-Footed Ferrets and Prairie Dogs. SIAM Journal on Applied Mathematics, 1991, 51, 1053-1073.	0.8	4
247	Oscillations in Population Numbers: Age-Dependent Cannibalism. Journal of Animal Ecology, 1991, 60, 471.	1.3	35
248	Chaos in a Three-Species Food Chain. Ecology, 1991, 72, 896-903.	1.5	828
249	Structured models of metapopulation dynamics. Biological Journal of the Linnean Society, 1991, 42, 57-71.	0.7	82
250	Structured models of metapopulation dynamics. , 1991, , 57-71.		8
251	Spatial Heterogeneity and Ecological Models. Ecology, 1990, 71, 426-428.	1.5	124
252	PLOIDY AND EVOLUTION BY SEXUAL SELECTION: A COMPARISON OF HAPLOID AND DIPLOID FEMALE CHOICE MODELS NEAR FIXATION EQUILIBRIA. Evolution; International Journal of Organic Evolution, 1990, 44, 757-770.	1.1	23

#	Article	IF	CITATIONS
253	MULTIPLE EQUILIBRIA AND MAINTENANCE OF ADDITIVE GENETIC VARIANCE IN A MODEL OF PLEIOTROPY. Evolution; International Journal of Organic Evolution, 1990, 44, 1153-1163.	1.1	26
254	Second-order approximations for selection coefficients at polygenic loci. Journal of Mathematical Biology, 1990, 28, 475-83.	0.8	12
255	Ploidy and Evolution by Sexual Selection: A Comparison of Haploid and Diploid Female Choice Models Near Fixation Equilibria. Evolution; International Journal of Organic Evolution, 1990, 44, 757.	1.1	6
256	Within-Patch Dynamics in a Metapopulation. Ecology, 1989, 70, 1261-1266.	1.5	117
257	Dependence of expected heterozygosity on locus number with stabilizing selection and drift. Journal of Theoretical Biology, 1988, 134, 103-112.	0.8	2
258	Food Web Theory and Stability. Ecology, 1988, 69, 1665-1668.	1.5	55
259	Extinction in Subdivided Habitats: Reply to Gilpin. Conservation Biology, 1988, 2, 293-296.	2.4	18
260	Extinction in Subdivided Habitats. Conservation Biology, 1987, 1, 198-209.	2.4	230
261	Can Competition Be Detected Using Species Co-Occurrence Data?. Ecology, 1987, 68, 117-123.	1.5	88
262	Cycles in cannibalistic egg-larval interactions. Journal of Mathematical Biology, 1987, 24, 651-666.	0.8	54
263	Cannibalistic Egg-Larva Interactions in Tribolium: An Explanation for the Oscillations in Population Numbers. American Naturalist, 1987, 130, 36-52.	1.0	67
264	Monotonic Change of the Mean Phenotype in Two-Locus Models. Genetics, 1987, 117, 583-585.	1.2	8
265	Substitution Rates Under Stabilizing Selection. Genetics, 1987, 116, 479-486.	1.2	6
266	The invasion question. Journal of Theoretical Biology, 1986, 121, 211-220.	0.8	4
267	Interacting Age Structured Populations. Biomathematics, 1986, , 287-294.	0.7	1
268	MULTILOCUS POPULATION GENETICS WITH WEAK EPISTASIS. II. EQUILIBRIUM PROPERTIES OF MULTILOCUS MODELS: WHAT IS THE UNIT OF SELECTION?. Genetics, 1986, 112, 157-171.	1.2	21
269	LIMITS TO THE RELATIONSHIP AMONG RECOMBINATION, DISEQUILIBRIUM AND EPISTASIS IN TWO-LOCUS MODELS. Genetics, 1986, 113, 177-185.	1.2	2
270	EVOLUTION IN THE SEASONAL THETA MODELS. Evolution; International Journal of Organic Evolution, 1985, 39, 709-709.	1.1	0

#	Article	IF	CITATIONS
271	Evolution in the Seasonal Theta Models. Evolution; International Journal of Organic Evolution, 1985, 39, 709.	1.1	0
272	STABLE EQUILIBRIA AT TWO LOCI IN POPULATIONS WITH LARGE SELFING RATES. Genetics, 1985, 109, 215-228.	1.2	2
273	FOUR SIMULTANEOUSLY STABLE POLYMORPHIC EQUILIBRIA IN TWO-LOCUS TWO-ALLELE MODELS. Genetics, 1985, 109, 255-261.	1.2	16
274	MULTILOCUS POPULATION GENETICS WITH WEAK EPISTASIS. I. EQUILIBRIUM PROPERTIES OF TWO-LOCUS TWO-ALLELE MODELS. Genetics, 1985, 109, 799-812.	1.2	18
275	Delays in recruitment at different trophic levels: Effects on stability. Journal of Mathematical Biology, 1984, 21, 35-44.	0.8	85
276	Dispersal strategies in patchy environments. Theoretical Population Biology, 1984, 26, 165-191.	0.5	444
277	Age-dependent predation is not a simple process. II. Wolves, ungulates, and a discrete time model for predation on juveniles with a stabilizing tail. Theoretical Population Biology, 1984, 26, 271-282.	0.5	39
278	Evolution in a Seasonal Environment: Simplicity Lost?. Evolution; International Journal of Organic Evolution, 1984, 38, 350.	1.1	4
279	EVOLUTION IN A SEASONAL ENVIRONMENT: SIMPLICITY LOST?. Evolution; International Journal of Organic Evolution, 1984, 38, 350-358.	1.1	8
280	Simple Models for Age Dependent Predation. Lecture Notes in Biomathematics, 1984, , 114-119.	0.3	7
281	LINKAGE DISEQUILIBRIUM, SELECTION AND RECOMBINATION AT THREE LOCI. Genetics, 1984, 106, 153-164.	1.2	16
282	Age-dependent predation is not a simple process. I. Continuous time models. Theoretical Population Biology, 1983, 23, 347-362.	0.5	134
283	Can spatial variation alone lead to selection for dispersal?. Theoretical Population Biology, 1983, 24, 244-251.	0.5	389
284	Age structure in predator-prey systems. I. A general model and a specific example. Theoretical Population Biology, 1982, 21, 44-56.	0.5	26
285	Age structure in predator-prey systems. II. Functional response and stability and the paradox of enrichment. Theoretical Population Biology, 1982, 21, 57-68.	0.5	14
286	Dynamics of a single species in a spatially varying environment: The stabilizing role of high dispersal rates. Journal of Mathematical Biology, 1982, 16, 49-55.	0.8	118
287	UNEXPECTED BEHAVIOR IN TWO LOCUS GENETIC SYSTEMS: AN ANALYSIS OF MARGINAL UNDERDOMINANCE AT A STABLE EQUILIBRIUM. Genetics, 1982, 102, 129-138.	1.2	17
288	Stable cycling in discrete-time genetic models Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 7224-7225.	3.3	86

#	Article	IF	CITATIONS
289	Multiple limit cycles in predator-prey models. Journal of Mathematical Biology, 1981, 11, 51-63.	0.8	24
290	Simultaneous stability of D = 0 and D ≠0 for multiplicative viabilities at two loci: An analytical study. Journal of Theoretical Biology, 1981, 89, 69-81.	0.8	16
291	DISEQUILIBRIUM, SELECTION, AND RECOMBINATION: LIMITS IN TWO-LOCUS, TWO-ALLELE MODELS. Genetics, 1981, 98, 659-668.	1.2	23
292	Fecundity, developmental time, and population growth rate: An analytical solution. Theoretical Population Biology, 1980, 17, 71-79.	0.5	101
293	Disturbance, coexistence, history, and competition for space. Theoretical Population Biology, 1980, 18, 363-373.	0.5	492
294	An evolutionary optimization principle. Journal of Theoretical Biology, 1978, 75, 519-525.	0.8	11
295	Evolutionarily stable strategies and the evolution of life history strategies: I. Density dependent models. Journal of Theoretical Biology, 1978, 75, 527-536.	0.8	42
296	Global stability in Lotka-Volterra systems with diffusion. Journal of Mathematical Biology, 1978, 6, 163-168.	0.8	131
297	Spatial heterogeneity and the stability of predator-prey systems: Predator-mediated coexistence. Theoretical Population Biology, 1978, 14, 380-395.	0.5	72
298	Spatial heterogeneity and the stability of predator-prey systems. Theoretical Population Biology, 1977, 12, 37-48.	0.5	162
299	Global stability of two species systems. Journal of Mathematical Biology, 1977, 5, 399.	0.8	27
300	Gene Flow: Effect in Stochastic Models of Differentiation. American Naturalist, 1974, 108, 701-705.	1.0	8
301	The effect of colonization dynamics in competition for space in metacommunities. Theoretical Ecology, 0, , 1.	0.4	0
302	Optimal management of a stochastically varying population when policy adjustment is costly. , 0, , 150806113437008.		1