
Elisa Montelatici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2738241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product. Journal of Translational Medicine, 2022, 20, 14.	4.4	4
2	Safety and Effectiveness of Cell Therapy in Neurodegenerative Diseases: Take-Home Messages From a Pilot Feasibility Phase I Study of Progressive Supranuclear Palsy. Frontiers in Neuroscience, 2021, 15, 723227.	2.8	1
3	Tips and Tricks for Validation of Quality Control Analytical Methods in Good Manufacturing Practice Mesenchymal Stromal Cell Production. Stem Cells International, 2018, 2018, 1-16.	2.5	23
4	Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration. European Journal of Cell Biology, 2016, 95, 228-238.	3.6	37
5	A Chemically Defined Medium-Based Strategy to Efficiently Generate Clinically Relevant Cord Blood Mesenchymal Stromal Colonies. Cell Transplantation, 2016, 25, 1501-1514.	2.5	12
6	Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy. Journal of Translational Medicine, 2016, 14, 127.	4.4	41
7	Extensive Characterization of Platelet Gel Releasate from Cord Blood in Regenerative Medicine. Cell Transplantation, 2015, 24, 2573-2584.	2.5	30
8	How we make cell therapy in Italy. Drug Design, Development and Therapy, 2015, 9, 4825.	4.3	9
9	Dissection of the Cord Blood Stromal Component Reveals Predictive Parameters for Culture Outcome. Stem Cells and Development, 2015, 24, 104-114.	2.1	22
10	Defining the identity of human adipose-derived mesenchymal stem cells. Biochemistry and Cell Biology, 2015, 93, 74-82.	2.0	15
11	Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study. Journal of Translational Medicine, 2014, 12, 14.	4.4	30
12	Assessing cytokines' talking patterns following experimental myocardial damage by applying Shannon's information theory. Journal of Theoretical Biology, 2014, 343, 25-31.	1.7	5
13	Perivascular support of human hematopoietic stem/progenitor cells. Blood, 2013, 121, 2891-2901.	1.4	167
14	Adipogenic potential in human mesenchymal stem cells strictly depends on adult or foetal tissue harvest. International Journal of Biochemistry and Cell Biology, 2013, 45, 2456-2466.	2.8	37
15	Differential microRNA signature of human mesenchymal stem cells from different sources reveals an "environmental-niche memory―for bone marrow stem cells. Experimental Cell Research, 2013, 319, 1562-1574.	2.6	45
16	A novel method for banking dental pulp stem cells. Transfusion and Apheresis Science, 2012, 47, 199-206.	1.0	51
17	Preâ€culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Proliferation, 2012, 45, 225-238.	5.3	125
18	Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. Journal of Cellular and Molecular Medicine, 2011, 15, 796-808.	3.6	60

Elisa Montelatici

#	Article	IF	CITATIONS
19	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	3.2	161
20	Role of Chk1 in the differentiation program of hematopoietic stem cells. Cellular and Molecular Life Sciences, 2010, 67, 1713-1722.	5.4	6
21	Perivascular multi-lineage progenitor cells in human organs: Regenerative units, cytokine sources or both?. Cytokine and Growth Factor Reviews, 2009, 20, 429-434.	7.2	148
22	Do mesenchymal stem cells play a role in vocal fold fat graft survival?. Cell Proliferation, 2008, 41, 460-473.	5.3	22
23	Potential advantages of cell administration on the inflammatory response compared to standard ACE inhibitor treatment in experimental myocardial infarction. Journal of Translational Medicine, 2008, 6, 30.	4.4	14
24	Oct-4 Expression in Adult Human Differentiated Cells Challenges Its Role as a Pure Stem Cell Marker. Stem Cells, 2007, 25, 1675-1680.	3.2	151
25	Assessment of Selective Homing and Contribution to Vessel Formation of Cryopreserved Peripherally Injected Bone Marrow Mononuclear Cells Following Experimental Myocardial Damage. Cardiovascular & Hematological Disorders Drug Targets, 2006, 6, 141-149.	0.7	4
26	Endothelial Colony Forming Capacity is Related to C-Reactive Protein Levels in Healthy Subjects. Current Neurovascular Research, 2006, 3, 99-106.	1.1	23
27	High-Altitude trekking in the Himalayas increases the activity of circulating endothelial cells. American Journal of Hematology, 2005, 79, 76-78.	4.1	19