
Vittorio Capozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2738149/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Validation of a Standard Protocol to Assess the Fermentative and Chemical Properties of Saccharomyces cerevisiae Wine Strains. Frontiers in Microbiology, 2022, 13, 830277.	3.5	6
2	Exploring the Probiotic Potential of Dairy Industrial-Relevant Lactobacilli. Applied Sciences (Switzerland), 2022, 12, 4989.	2.5	5
3	Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation, 2022, 8, 275.	3.0	4
4	Knock out of sHSP genes determines some modifications in the probiotic attitude of Lactiplantibacillus plantarum. Biotechnology Letters, 2021, 43, 645-654.	2.2	7
5	Selection of Riboflavin Overproducing Strains of Lactic Acid Bacteria and Riboflavin Direct Quantification by Fluorescence. Methods in Molecular Biology, 2021, 2280, 3-14.	0.9	5
6	Editorial: Lactic Acid Fermentation and the Colours of Biotechnology 2.0. Fermentation, 2021, 7, 32.	3.0	2
7	Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. Fermentation, 2021, 7, 24.	3.0	21
8	Microbial-based Biocontrol Solutions for Fruits and Vegetables: Recent Insight, Patents, and Innovative Trends. Recent Patents on Food, Nutrition & amp; Agriculture, 2021, 12, 3-18.	0.9	17
9	Microbial Resources, Fermentation and Reduction of Negative Externalities in Food Systems: Patterns toward Sustainability and Resilience. Fermentation, 2021, 7, 54.	3.0	19
10	Microbial Biocontrol as an Alternative to Synthetic Fungicides: Boundaries between Pre- and Postharvest Applications on Vegetables and Fruits. Fermentation, 2021, 7, 60.	3.0	38
11	Screening of Lactic Acid Bacteria for the Bio-Control of Botrytis cinerea and the Potential of Lactiplantibacillus plantarum for Eco-Friendly Preservation of Fresh-Cut Kiwifruit. Microorganisms, 2021, 9, 773.	3.6	28
12	Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients. Foods, 2021, 10, 1831.	4.3	16
13	Non-targeted metabolomic approach as a tool to evaluate the chemical profile of sparkling wines fermented with autochthonous yeast strains. Food Control, 2021, 126, 108099.	5.5	10
14	Editorial: Microbiological Safety of Foods. Foods, 2021, 10, 53.	4.3	5
15	Bioprospecting Antimicrobials from Lactiplantibacillus plantarum: Key Factors Underlying Its Probiotic Action. International Journal of Molecular Sciences, 2021, 22, 12076.	4.1	25
16	A Non-Targeted Metabolomic Approach for the Characterization of Chemical Profile of Sparkling Wines Produced Using Autochthonous Yeast Strains. , 2021, 6, .		0
17	Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector. Recent Patents on Food, Nutrition & Samp; Agriculture, 2020, 11, 27-39.	0.9	109
18	How probiotics face food stress: They get by with a little help. Critical Reviews in Food Science and Nutrition, 2020, 60, 1552-1580.	10.3	88

#	Article	lF	CITATIONS
19	Real-Time Monitoring of Volatile Compounds Losses in the Oven during Baking and Toasting of Gluten-Free Bread Doughs: A PTR-MS Evidence. Foods, 2020, 9, 1498.	4.3	13
20	Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods, 2020, 9, 1138.	4.3	89
21	Effect of Co-Inoculation of Candida zemplinina, Saccharomyces cerevisiae and Lactobacillus plantarum for the Industrial Production of Negroamaro Wine in Apulia (Southern Italy). Microorganisms, 2020, 8, 726.	3.6	30
22	PTR-ToF-MS for the Online Monitoring of Alcoholic Fermentation in Wine: Assessment of VOCs Variability Associated with Different Combinations of Saccharomyces/Non-Saccharomyces as a Case-Study. Fermentation, 2020, 6, 55.	3.0	36
23	Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS. Molecules, 2020, 25, 1242.	3.8	22
24	Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms, 2020, 8, 306.	3.6	49
25	Microbial Populations of Fresh and Cold Stored Donkey Milk by High-Throughput Sequencing Provide Indication for A Correct Management of This High-Value Product. Applied Sciences (Switzerland), 2020, 10, 2314.	2.5	11
26	New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms, 2020, 8, 628.	3.6	25
27	Effect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation. Food Research International, 2020, 134, 109246.	6.2	21
28	From Microbial Ecology to Innovative Applications in Food Quality Improvements: the Case of Sourdough as a Model Matrix. J, 2020, 3, 9-19.	0.9	10
29	Phenotypic and genotypic characterization of Lactobacilli and Pediococci isolated from traditional Algerian fermentation products. South Asian Journal of Experimental Biology, 2020, 10, 95-103.	0.1	1
30	In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiology, 2019, 77, 61-68.	4.2	71
31	Exploitation of Prunus mahaleb fruit by fermentation with selected strains of Lactobacillus plantarum and Saccharomyces cerevisiae. Food Microbiology, 2019, 84, 103262.	4.2	25
32	The Phenotypic Analysis of Lactobacillus plantarum shsp Mutants Reveals a Potential Role for hsp1 in Cryotolerance. Frontiers in Microbiology, 2019, 10, 838.	3.5	28
33	A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine. International Journal of Molecular Sciences, 2019, 20, 3980.	4.1	39
34	Novel milk–juice beverage with fermented sheep milk and strawberry (Fragaria × ananassa): Nutritional and functional characterization. Journal of Dairy Science, 2019, 102, 10724-10736.	3.4	56
35	Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. Fermentation, 2019, 5, 85.	3.0	48
36	Impact of co-inoculation of Saccharomyces cerevisiae, Hanseniaspora uvarum and Oenococcus oeni autochthonous strains in controlled multi starter grape must fermentations. LWT - Food Science and Technology, 2019, 109, 241-249.	5.2	31

#	Article	IF	CITATIONS
37	Pesticide Residues and Stuck Fermentation in Wine: New Evidences Indicate the Urgent Need of Tailored Regulations. Fermentation, 2019, 5, 23.	3.0	25
38	Exploration of the Microbial Biodiversity Associated with North Apulian Sourdoughs and the Effect of the Increasing Number of Inoculated Lactic Acid Bacteria Strains on the Biocontrol against Fungal Spoilage. Fermentation, 2019, 5, 97.	3.0	14
39	Selection of an autochthonous yeast starter culture for industrial production of Primitivo "Gioia del Colle―PDO/DOC in Apulia (Southern Italy). LWT - Food Science and Technology, 2019, 99, 188-196.	5.2	19
40	Evaluating the Probiotic Potential of Lactobacillus plantarum Strains from Algerian Infant Feces: Towards the Design of Probiotic Starter Cultures Tailored for Developing Countries. Probiotics and Antimicrobial Proteins, 2019, 11, 113-123.	3.9	45
41	Chapter 2. Microorganisms Able to Produce Biogenic Amines and Factors Affecting Their Activity. Food Chemistry, Function and Analysis, 2019, , 18-40.	0.2	Ο
42	Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Scientific Reports, 2018, 8, 4136.	3.3	91
43	An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control, 2018, 87, 169-179.	5.5	11
44	Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine. Applied Microbiology and Biotechnology, 2018, 102, 569-576.	3.6	39
45	Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Applied Microbiology and Biotechnology, 2018, 102, 9949-9958.	3.6	82
46	Evaluation of PTR-ToF-MS as a tool to track the behavior of hop-derived compounds during the fermentation of beer. Food Research International, 2018, 111, 582-589.	6.2	20
47	Effect of different conditions on Listeria monocytogenes biofilm formation and removal. Czech Journal of Food Sciences, 2018, 36, 208-214.	1.2	10
48	Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties. International Journal of Food Microbiology, 2018, 285, 7-17.	4.7	32
49	Analysis of volatile organic compounds in crumb and crust of different baked and toasted glutenâ€free breads by direct PTRâ€ToFâ€MS and fastâ€GCâ€PTRâ€ToFâ€MS. Journal of Mass Spectrometry, 2018, 53, 893-9	02 ^{1.6}	16
50	Exopolysaccharides Produced by Lactic Acid Bacteria and Their Role in the Food Industry. , 2018, , 21-49.		0
51	Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology, 2017, 247, 48-54.	4.7	183
52	The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Applied Microbiology and Biotechnology, 2017, 101, 2641-2657.	3.6	58
53	A Focus on Quality and Safety Traits of <i>Saccharomyces cerevisiae</i> Isolated from Uva di Troia Grape Variety. Journal of Food Science, 2017, 82, 124-133.	3.1	15
54	PTR-ToF-MS Coupled with an Automated Sampling System and Tailored Data Analysis for Food Studies: Bioprocess Monitoring, Screening and Nose-space Analysis. Journal of Visualized Experiments, 2017, , .	0.3	18

#	Article	IF	CITATIONS
55	Use of Autochthonous Yeasts and Bacteria in Order to Control Brettanomyces bruxellensis in Wine. Fermentation, 2017, 3, 65.	3.0	32
56	In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential. International Journal of Molecular Sciences, 2017, 18, 1588.	4.1	31
57	Microbial Resources and Enological Significance: Opportunities and Benefits. Frontiers in Microbiology, 2017, 8, 995.	3.5	99
58	Identification of acetic acid bacteria isolated from Tunisian palm sap. African Journal of Microbiology Research, 2017, 11, 596-602.	0.4	2
59	Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation, 2017, 3, 49.	3.0	130
60	Microbial Resources and Innovation in the Wine Production Sector. South African Journal of Enology and Viticulture, 2017, 38, .	0.4	44
61	Lactobacillus plantarum with Broad Antifungal Activity as a Protective Starter Culture for Bread Production. Foods, 2017, 6, 110.	4.3	48
62	Two different Oenococcus oeni lineages are associated to either red or white wines in Burgundy: genomics and metabolomics insights. Oeno One, 2017, 51, 309.	1.4	34
63	PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin. Molecules, 2016, 21, 483.	3.8	45
64	The Microbiota of Non-cow Milk and Products. , 2016, , 117-159.		4
65	Metabolites of Microbial Origin with an Impact on Health: Ochratoxin A and Biogenic Amines. Frontiers in Microbiology, 2016, 7, 482.	3.5	52
66	The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production. Frontiers in Microbiology, 2016, 7, 670.	3.5	123
67	Starter Cultures for Sparkling Wine. Fermentation, 2016, 2, 21.	3.0	32
68	Advances in wine analysis by PTR-ToF-MS: Optimization of the method and discrimination of wines from different geographical origins and fermented with different malolactic starters. International Journal of Mass Spectrometry, 2016, 397-398, 42-51.	1.5	34
69	Rapid nonâ€invasive quality control of semiâ€finished products for the food industry by direct injection mass spectrometry headspace analysis: the case of milk powder, whey powder and anhydrous milk fat. Journal of Mass Spectrometry, 2016, 51, 782-791.	1.6	16
70	Draft Genome Sequence of Pediococcus parvulus 2.6, a Probiotic Î ² -Glucan Producer Strain. Genome Announcements, 2016, 4, .	0.8	6
71	Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach. Food Microbiology, 2016, 59, 196-204.	4.2	76
72	Lactobacillus plantarum WCFS1 β-Fructosidase: Evidence for an Open Funnel-Like Channel Through the Catalytic Domain with Importance for the Substrate Selectivity. Applied Biochemistry and Biotechnology, 2016, 180, 1056-1075.	2.9	3

#	Article	IF	CITATIONS
73	Draft Genome Sequence of Lactobacillus collinoides CUPV237, an Exopolysaccharide and Riboflavin Producer Isolated from Cider. Genome Announcements, 2016, 4, .	0.8	3
74	Non-Saccharomyces biodiversity in wine and the â€~microbial terroir': a survey on Nero di Troia wine from the Apulian region, Italy. Annals of Microbiology, 2016, 66, 143-150.	2.6	44
75	Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Applied Microbiology and Biotechnology, 2016, 100, 4595-4605.	3.6	76
76	Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiology, 2016, 57, 187-194.	4.2	80
77	Combinations of cereal l̂²-glucans and probiotics can enhance the anti-inflammatory activity on host cells by a synergistic effect. Journal of Functional Foods, 2016, 23, 12-23.	3.4	40
78	From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia― autochthonous grape cultivar. World Journal of Microbiology and Biotechnology, 2016, 32, 59.	3.6	59
79	Lactobacillus plantarum strains for multifunctional oat-based foods. LWT - Food Science and Technology, 2016, 68, 288-294.	5.2	81
80	Simultaneous inoculation of yeasts and lactic acid bacteria: Effects on fermentation dynamics and chemical composition of Negroamaro wine. LWT - Food Science and Technology, 2016, 66, 406-412.	5.2	67
81	Stressors and Food Environment. , 2016, , 245-256.		3
82	β-Glucans and Synbiotic Foods. , 2016, , 423-433.		2
83	Functional Starters for Functional Yogurt. Foods, 2015, 4, 15-33.	4.3	30
84	Draft Genome Sequence of Lactobacillus plantarum Lp90 Isolated from Wine. Genome Announcements, 2015, 3, .	0.8	17
85	Autochthonous starter cultures and indigenous grape variety for regional wine production. Journal of Applied Microbiology, 2015, 118, 1395-1408.	3.1	72
86	Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. Food Research International, 2015, 76, 682-688.	6.2	26
87	The yeast <i>Starmerella bacillaris</i> (synonym <i>Candida zemplinina</i>) shows high genetic diversity in winemaking environments. FEMS Yeast Research, 2015, 15, fov045.	2.3	70
88	The great microbial beauty. Trends in Microbiology, 2015, 23, 334.	7.7	0
89	Proton transfer reaction–mass spectrometry: online and rapid determination of volatile organic compounds of microbial origin. Applied Microbiology and Biotechnology, 2015, 99, 3787-3795.	3.6	46
90	Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiological Research, 2015, 181, 75-83.	5.3	185

#	Article	IF	CITATIONS
91	Volatile Compound Production During the Bread-Making Process: Effect of Flour, Yeast and Their Interaction. Food and Bioprocess Technology, 2015, 8, 1925-1937.	4.7	52
92	Intraspecific biodiversity and â€~spoilage potential' of Brettanomyces bruxellensis in Apulian wines. LWT - Food Science and Technology, 2015, 60, 102-108.	5.2	46
93	Cyclic shear test on a dowel beam-to-column connection of precast buildings. Earthquake and Structures, 2015, 9, 541-562.	1.0	23
94	A Fast, Reliable, and Sensitive Method for Detection and Quantification of <i>Listeria monocytogenes</i> and <i>Escherichia coli</i> O157:H7 in Ready-to-Eat Fresh-Cut Products by MPN-qPCR. BioMed Research International, 2014, 2014, 1-9.	1.9	24
95	Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria. International Journal of Molecular Sciences, 2014, 15, 3025-3039.	4.1	98
96	Fresh-Cut Pineapple as a New Carrier of Probiotic Lactic Acid Bacteria. BioMed Research International, 2014, 2014, 1-9.	1.9	45
97	Genome Sequence of Oenococcus oeni OM27, the First Fully Assembled Genome of a Strain Isolated from an Italian Wine. Genome Announcements, 2014, 2, .	0.8	28
98	Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy. Genome Announcements, 2014, 2, .	0.8	35
99	Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain. Genome Announcements, 2014, 2, .	0.8	16
100	A partial proteome reference map of the wine lactic acid bacterium <i>Oenococcus oeni</i> ATCC BAA-1163. Open Biology, 2014, 4, 130154.	3.6	28
101	Protonâ€ŧransferâ€reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters. Journal of Mass Spectrometry, 2014, 49, 850-859.	1.6	38
102	Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Applied Microbiology and Biotechnology, 2014, 98, 3691-3700.	3.6	122
103	FEM analysis of the strength of RC beam-to-column dowel connections under monotonic actions. Construction and Building Materials, 2014, 69, 271-284.	7.2	57
104	Seismic performance evaluation of plasterboard partitions via shake table tests. Bulletin of Earthquake Engineering, 2014, 12, 1657-1677.	4.1	74
105	Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Applied Microbiology and Biotechnology, 2014, 98, 7569-7581.	3.6	85
106	Introducing Ethics in Your Instruction Using a TED Talks PlaylistReview of: Selected TED talks focused on ethics, http://www.ted.com/ Journal of Microbiology and Biology Education, 2014, 15, 246-246.	1.0	1
107	Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiology, 2013, 36, 335-342.	4.2	87
108	Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiological Research, 2013, 168, 351-359.	5.3	104

#	Article	IF	CITATIONS
109	Comparative Proteomic Analysis of Lactobacillus plantarum WCFS1 and ΔctsR Mutant Strains Under Physiological and Heat Stress Conditions. International Journal of Molecular Sciences, 2012, 13, 10680-10696.	4.1	33
110	Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine. Frontiers in Microbiology, 2012, 3, 122.	3.5	135
111	Transdisciplinarity and Microbiology Education. Journal of Microbiology and Biology Education, 2012, 13, 70-73.	1.0	14
112	Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Applied Microbiology and Biotechnology, 2012, 96, 1383-1394.	3.6	205
113	Shake table tests for seismic assessment of suspended continuous ceilings. Bulletin of Earthquake Engineering, 2012, 10, 1819-1832.	4.1	74
114	Microbial information regimen in EU geographical indications. World Patent Information, 2012, 34, 229-231.	1.7	19
115	Probiotic features of Lactobacillus plantarum mutant strains. Applied Microbiology and Biotechnology, 2012, 96, 431-441.	3.6	66
116	Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms. International Journal of Molecular Sciences, 2012, 13, 6026-6039.	4.1	131
117	Biotechnology and Pasta-Making: Lactic Acid Bacteria as a New Driver of Innovation. Frontiers in Microbiology, 2012, 3, 94.	3.5	24
118	Increasing membrane protection in Lactobacillus plantarum cells overproducing small heat shock proteins. Annals of Microbiology, 2012, 62, 517-522.	2.6	6
119	Seismic performance of R/C frames with overstrength discontinuities in elevation. Bulletin of Earthquake Engineering, 2012, 10, 679-694.	4.1	15
120	Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: Effects on growth, stress tolerance, cell surface properties and biofilm formation. Microbiological Research, 2012, 167, 187-193.	5.3	63
121	Biotechnological Production of Vitamin B2-Enriched Bread and Pasta. Journal of Agricultural and Food Chemistry, 2011, 59, 8013-8020.	5.2	121
122	Inactivation of a small heat shock protein affects cell morphology and membrane fluidity in Lactobacillus plantarum WCFS1. Research in Microbiology, 2011, 162, 419-425.	2.1	56
123	Food Microbial Biodiversity and ?Microbes of Protected Origin?. Frontiers in Microbiology, 2011, 2, 237.	3.5	54
124	Expression of Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes in wine correlates with substrate availability. Letters in Applied Microbiology, 2011, 53, 395-402.	2.2	22
125	Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiology, 2011, 28, 434-439.	4.2	55
126	Effect of abiotic stress conditions on expression of the Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes. Annals of Microbiology, 2011, 61, 179-183.	2.6	18

#	Article	IF	CITATIONS
127	Involvement of the sigma factor sigma H in the regulation of a small heat shock protein gene in Lactobacillus plantarum WCFS1. Annals of Microbiology, 2011, 61, 973-977.	2.6	6
128	Neoprene–concrete friction relationships for seismic assessment of existing precast buildings. Engineering Structures, 2011, 33, 532-538.	5.3	54
129	The hsp 16 Gene of the Probiotic Lactobacillus acidophilus Is Differently Regulated by Salt, High Temperature and Acidic Stresses, as Revealed by Reverse Transcription Quantitative PCR (qRT-PCR) Analysis. International Journal of Molecular Sciences, 2011, 12, 5390-5405.	4.1	22
130	Responses of Lactic Acid Bacteria to Cold Stress. , 2011, , 91-110.		2
131	Biogenic amine in wines. Annals of Microbiology, 2010, 60, 573-578.	2.6	88
132	Technological properties of <i>Oenococcus oeni</i> strains isolated from typical southern Italian wines. Letters in Applied Microbiology, 2010, 50, 327-334.	2.2	92
133	Characterization of the CtsR Stress Response Regulon in <i>Lactobacillus plantarum</i> . Journal of Bacteriology, 2010, 192, 896-900.	2.2	63
134	Bacterial Stressors in Minimally Processed Food. International Journal of Molecular Sciences, 2009, 10, 3076-3105.	4.1	86
135	Horizontal gene transfer in the gut: Is it a risk?. Food Research International, 2009, 42, 1501-1502.	6.2	17
136	Validation of an internal control gene to apply reverse transcription quantitative PCR to study heat, cold and ethanol stresses in Lactobacillus plantarum. World Journal of Microbiology and Biotechnology, 2008, 24, 899-902.	3.6	31
137	Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Applied Microbiology and Biotechnology, 2007, 77, 909-915.	3.6	100
138	Cloning, molecular characterization and expression analysis of two small heat shock genes isolated from wine Lactobacillus plantarum. Journal of Applied Microbiology, 2004, 97, 774-782.	3.1	38
139	Real-Time Monitoring of Flavoring Starter Cultures for Different Food Matrices Using PTR-MS. ACS Symposium Series, 0, , 123-138.	0.5	0