Gleb Baryshnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2737778/publications.pdf

Version: 2024-02-01

192 papers 5,036 citations

36 h-index 59 g-index

194 all docs

194 docs citations

times ranked

194

4288 citing authors

#	Article	IF	CITATIONS
1	Theory and Calculation of the Phosphorescence Phenomenon. Chemical Reviews, 2017, 117, 6500-6537.	23.0	420
2	Principles of phosphorescent organic light emitting devices. Physical Chemistry Chemical Physics, 2014, 16, 1719-1758.	1.3	398
3	Cyclo[18]carbon: Insight into Electronic Structure, Aromaticity, and Surface Coupling. Journal of Physical Chemistry Letters, 2019, 10, 6701-6705.	2.1	103
4	Crystal Multiâ€Conformational Control Through Deformable Carbonâ€Sulfur Bond for Singletâ€Triplet Emissive Tuning. Angewandte Chemie - International Edition, 2019, 58, 4328-4333.	7.2	82
5	Diazadioxa[8]circulenes: Planar Antiaromatic Cyclooctatetraenes. Chemistry - A European Journal, 2013, 19, 17097-17102.	1.7	80
6	A three-dimensional ratiometric sensing strategy on unimolecular fluorescence–thermally activated delayed fluorescence dual emission. Nature Communications, 2019, 10, 731.	5 . 8	80
7	First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions. Physical Chemistry Chemical Physics, 2018, 20, 6121-6133.	1.3	79
8	Azatrioxa[8]circulenes: Planar Antiâ€Aromatic Cyclooctatetraenes. Chemistry - A European Journal, 2013, 19, 3898-3904.	1.7	78
9	Mixing of Phosphorescent and Exciplex Emission in Efficient Organic Electroluminescent Devices. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1219-1225.	4.0	78
10	Anti-Kasha's Rule Emissive Switching Induced by Intermolecular H-Bonding. Chemistry of Materials, 2018, 30, 8008-8016.	3.2	75
11	Efficient "Warm-White―OLEDs Based on the Phosphorescent bis-Cyclometalated iridium(III) Complex. Journal of Physical Chemistry C, 2014, 118, 11271-11278.	1.5	73
12	One-step solvothermal synthesis of high-emissive amphiphilic carbon dots <i>via</i> rigidity derivation. Chemical Science, 2018, 9, 1323-1329.	3.7	71
13	Aromaticity of the planar hetero[8]circulenes and their doubly charged ions: NICS and GIMIC characterization. Physical Chemistry Chemical Physics, 2014, 16, 15367-15374.	1.3	69
14	Molecular Phosphorescence in Polymer Matrix with Reversible Sensitivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20765-20774.	4.0	68
15	Highly Efficient Blue Organic Light-Emitting Diodes Based on Intermolecular Triplet–Singlet Energy Transfer. Journal of Physical Chemistry C, 2013, 117, 22538-22544.	1.5	65
16	Contribution of TADF and exciplex emission for efficient "warm-white―OLEDs. Journal of Materials Chemistry C, 2018, 6, 1543-1550.	2.7	64
17	Integrating Timeâ€Resolved Imaging Information by Singleâ€Luminophore Dual Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 17018-17025.	7.2	58
18	Novel Zinc Complex with an Ethylenediamine Schiff Base for High-Luminance Blue Fluorescent OLED Applications. Journal of Physical Chemistry C, 2019, 123, 11850-11859.	1.5	56

#	Article	IF	Citations
19	DFT characterization of a new possible graphene allotrope. Chemical Physics Letters, 2014, 612, 229-233.	1.2	54
20	Benzoannelated aza-, oxa- and azaoxa[8]circulenes as promising blue organic emitters. Physical Chemistry Chemical Physics, 2016, 18, 28040-28051.	1.3	54
21	Electronic structure and spectral properties of the triarylamine-dithienosilole dyes for efficient organic solar cells. Dyes and Pigments, 2012, 92, 531-536.	2.0	53
22	Tetrathio and Tetraseleno [8] circulenes: Synthesis, Structures, and Properties. Chemistry - an Asian Journal, 2015, 10, 969-975.	1.7	52
23	Experimental and theoretical study of IR and Raman spectra of tetraoxa[8]circulenes. Vibrational Spectroscopy, 2012, 61, 156-166.	1.2	51
24	Nucleus-independent chemical shift criterion for aromaticity in π-extended tetraoxa[8]circulenes. Journal of Molecular Modeling, 2013, 19, 847-850.	0.8	50
25	The art of the possible: computational design of the 1D and 2D materials based on the tetraoxa[8]circulene monomer. RSC Advances, 2014, 4, 25843-25851.	1.7	50
26	Design of nanoscaled materials based on tetraoxa[8]circulene. Physical Chemistry Chemical Physics, 2014, 16, 6555.	1.3	48
27	Fluorescence and FTIR Spectra Analysis of Trans-A2B2-Substituted Di- and Tetra-Phenyl Porphyrins. Materials, 2010, 3, 4446-4475.	1.3	47
28	Electronic structure, aromaticity and spectra of hetero[8]circulenes. Russian Chemical Reviews, 2015, 84, 455-484.	2.5	46
29	Dualâ€Phase Thermally Activated Delayed Fluorescence Luminogens: A Material for Timeâ€Resolved Imaging Independent of Probe Pretreatment and Probe Concentration. Angewandte Chemie - International Edition, 2020, 59, 7548-7554.	7.2	46
30	Simultaneous anchoring of Ni nanoparticles and single-atom Ni on BCN matrix promotes efficient conversion of nitrate in water into high-value-added ammonia. Chemical Engineering Journal, 2022, 433, 133190.	6.6	46
31	Highly Luminous Sky-Blue Organic Light-Emitting Diodes Based on the Bis[(1,2)(5,6)]indoloanthracene Emissive Layer. Journal of Physical Chemistry C, 2016, 120, 6206-6217.	1.5	45
32	A Fluorescence–Phosphorescence–Phosphorescence Tripleâ€Channel Emission Strategy for Fullâ€Color Luminescence. Small, 2020, 16, e1906475.	5.2	45
33	Potassium ions promote electrochemical nitrogen reduction on nano-Au catalysts triggered by bifunctional boron supramolecular assembly. Journal of Materials Chemistry A, 2020, 8, 13086-13094.	5.2	44
34	Density functional theory study of electronic structure and spectra of tetraoxa[8]circulenes. Computational and Theoretical Chemistry, 2011, 972, 68-74.	1.1	43
35	Photoinduced Radical Emission in a Coassembly System. Angewandte Chemie - International Edition, 2021, 60, 23842-23848.	7.2	43
36	Fragmentation of the adenine and guanine molecules induced by electron collisions. Journal of Chemical Physics, 2014, 140, 175101.	1.2	42

#	Article	IF	Citations
37	Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water. Journal of Materials Chemistry A, 2021, 9, 23675-23686.	5.2	42
38	Application of Bader's atoms in molecules theory to the description of coordination bonds in the complex compounds of Ca2+ and Mg2+ with methylidene rhodanine and its anion. Russian Journal of General Chemistry, 2012, 82, 1254-1262.	0.3	39
39	Deciphering the unusual fluorescence in weakly coupled bis-nitro-pyrrolo[3,2-b]pyrroles. Communications Chemistry, 2020, 3, .	2.0	37
40	DFT and QTAIM study of the tetra-tert-butyltetraoxa[8]circulene regioisomers structure. Journal of Molecular Structure, 2012, 1026, 127-132.	1.8	35
41	Aromaticity of the completely annelated tetraphenylenes: NICS and GIMIC characterization. Journal of Molecular Modeling, 2015, 21, 136.	0.8	34
42	Aromaticity of the doubly charged [8]circulenes. Physical Chemistry Chemical Physics, 2016, 18, 8980-8992.	1.3	34
43	Synthesis and characterisation of a carbazole-based bipolar exciplex-forming compound for efficient and color-tunable OLEDs. New Journal of Chemistry, 2017, 41, 559-568.	1.4	34
44	The effect of molecular structure on the properties of quinoxaline-based molecules for OLED applications. Dyes and Pigments, 2020, 173, 108008.	2.0	34
45	Schiff Base Zinc(II) Complexes as Promising Emitters for Blue Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 3436-3444.	2.0	34
46	A DFT and QTAIM study of the novel d-block metal complexes with tetraoxa[8]circulene-based ligands. New Journal of Chemistry, 2015, 39, 7815-7821.	1.4	33
47	Nine-ring angular fused biscarbazoloanthracene displaying a solid state based excimer emission suitable for OLED application. Journal of Materials Chemistry C, 2016, 4, 5795-5805.	2.7	33
48	BCN-Encapsulated Nano-nickel Synergistically Promotes Ambient Electrochemical Dinitrogen Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31419-31430.	4.0	33
49	Nâ€Confused Phlorinâ€Prodigiosin Chimera: <i>meso</i> li>â€Aryl Oxidation and Ï€â€Extension Triggered by Peripheral Coordination. Angewandte Chemie - International Edition, 2020, 59, 1537-1541.	7.2	32
50	First-principles calculations of anharmonic and deuteration effects on the photophysical properties of polyacenes and porphyrinoids. Physical Chemistry Chemical Physics, 2020, 22, 22314-22323.	1.3	32
51	Single crystal architecture and absorption spectra of octathio[8]circulene and sym-tetraselenatetrathio[8]circulene: QTAIM and TD-DFT approach. Journal of Molecular Modeling, 2013, 19, 4511-4519.	0.8	31
52	Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Applied Materials Today, 2021, 25, 101206.	2.3	31
53	Porphyrins containing a tetraphenylethylene-substituted phenothiazine donor for fabricating efficient dye sensitized solar cells with high photovoltages. Journal of Materials Chemistry A, 2022, 10, 1320-1328.	5.2	31
54	BODIPY-core 1,7-diphenyl-substituted derivatives for photovoltaics and OLED applications. Dyes and Pigments, 2020, 175, 108123.	2.0	30

#	Article	IF	CITATIONS
55	Aromaticity of Even-Number Cyclo[⟨i⟩n⟨ i⟩ carbons (⟨i⟩n⟨ i⟩ = 6–100). Journal of Physical Chemistry A, 2020, 124, 10849-10855.	1.1	30
56	Alkali and alkaline-earth metal complexes with tetraoxa[8]circulene sheet: a computational study by DFT and QTAIM methods. RSC Advances, 2015, 5, 24299-24305.	1.7	28
57	Recent progress in quantum chemistry of hetero[8]circulenes. Molecular Physics, 2017, 115, 2218-2230.	0.8	28
58	New WOLEDs based on π-extended azatrioxa[8]circulenes. Journal of Materials Chemistry C, 2017, 5, 4123-4128.	2.7	28
59	Crystal Multiâ€Conformational Control Through Deformable Carbonâ€Sulfur Bond for Singletâ€∓riplet Emissive Tuning. Angewandte Chemie, 2019, 131, 4372-4377.	1.6	28
60	A Fully Conjugated Planar Heterocyclic [9]Circulene. Journal of the American Chemical Society, 2020, 142, 14058-14063.	6.6	28
61	Compressing a Nonâ€Planar Aromatic Heterocyclic [7]Helicene to a Planar Hetero[8]Circulene. Chemistry - A European Journal, 2020, 26, 4935-4940.	1.7	28
62	Efficient Dye-Sensitized Solar Cells Based on a New Class of Doubly Concerted Companion Dyes. ACS Applied Materials & Doubly Concerted Companion Dyes. ACS Applied Materials & Double Concerted Concer	4.0	28
63	Efficient Ambient Electrocatalytic Ammonia Synthesis by Nanogold Triggered via Boron Clusters Combined with Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42821-42831.	4.0	27
64	The FTIR spectra of substituted tetraoxa[8]circulenes and their assignments based on DFT calculations. Vibrational Spectroscopy, 2013, 65, 147-158.	1,2	26
65	A comparative study of the electronic structure and spectra of tetraoxa[8]circulene and octathio[8]circulene. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 116, 33-46.	0.2	26
66	Skeletal Rearrangement of Twisted Thiaâ€Norhexaphyrin: Multiply Annulated Polypyrrolic Aromatic Macrocycles. Angewandte Chemie - International Edition, 2019, 58, 5925-5929.	7.2	26
67	Strong Topological States and High Charge Carrier Mobility in Tetraoxa[8]circulene Nanosheets. Journal of Physical Chemistry C, 2018, 122, 22216-22222.	1.5	25
68	Engineering stable radicals using photochromic triggers. Nature Communications, 2020, 11, 945.	5.8	25
69	Manipulating crystals through photoexcitation-induced molecular realignment. Journal of Materials Chemistry C, 2021, 9, 11707-11714.	2.7	25
70	Thiazoline Carbene–Cu(I)–Amide complexes: Efficient White Electroluminescence from Combined Monomer and Excimer Emission. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15478-15493.	4.0	25
71	Structure of zinc complexes with 3-(pyridin-2-yl)-5-(arylideneiminophenyl)-1H-1,2,4-triazoles in different tautomeric forms: DFT and QTAIM study. Russian Journal of Inorganic Chemistry, 2013, 58, 928-934.	0.3	24
72	Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues. RSC Advances, 2016, 6, 49505-49516.	1.7	24

#	Article	IF	CITATIONS
73	Multi-channel electroluminescence of CdTe/CdS core-shell quantum dots implemented into a QLED device. Dyes and Pigments, 2019, 162, 647-653.	2.0	23
74	Expanded N-Confused Phlorin: A Platform for a Multiply Fused Polycyclic Ring System via Oxidation within the Macrocycle. Journal of the American Chemical Society, 2020, 142, 17195-17205.	6.6	23
75	DFT simulation of the heteroannelated octatetraenes vibronic spectra with the Franck–Condon and Herzberg–Teller approaches including Duschinsky effect. Chemical Physics, 2015, 459, 65-71.	0.9	22
76	Structure and spectroscopic characterization of tetrathia- and tetraselena[8]circulenes as a new class of polyaromatic heterocycles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 247-261.	2.0	22
77	N-annelated perylenes as effective green emitters for OLEDs. RSC Advances, 2015, 5, 78150-78159.	1.7	21
78	Lighting up solid states using a rubber. Nature Communications, 2021, 12, 908.	5.8	21
79	Structure and spectral properties of truxene dye S5. Optics and Spectroscopy (English Translation of) Tj ETQq1	1 0,78431 0,2	4 rgBT /Over
80	Synthesis and photophysical properties of Zn(II) Schiff base complexes possessing strong solvent-dependent solid-state fluorescence. Polyhedron, 2018, 155, 202-208.	1.0	20
81	Extended Discrete Interaction Model: Plasmonic Excitations of Silver Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 28867-28880.	1.5	20
82	Twisted-Planar-Twisted expanded porphyrinoid dimer as a rudimentary reaction-based methanol indicator. Nature Communications, 2020, 11, 5289.	5.8	20
83	Enhancing the Operability of Photoexcitation-Controlled Aggregation-Induced Emissive Molecules in the Organic Phase. Journal of Physical Chemistry Letters, 2021, 12, 6182-6189.	2.1	20
84	Theoretical study of vibration spectra of sensitizing dyes for photoelectrical converters based on ruthenium(II) and iridium(III) complexes. Russian Journal of Applied Chemistry, 2009, 82, 1211-1221.	0.1	19
85	Quantum-chemical study of the structure and optical properties of sensitized dyes of an indoline-thiazolidine series. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 16-22.	0.2	19
86	Quantum-chemical study of effect of conjugation on structure and spectral properties of C105 sensitizing dye. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 393-400.	0.2	19
87	Synthesis and properties of synthetic fulvic acid derived from hematoxylin. Journal of Molecular Structure, 2015, 1086, 25-33.	1.8	19
88	Aromaticity and photophysics of tetrasila- and tetragerma-annelated tetrathienylenes as new representatives of the hetero[8]circulene family. Physical Chemistry Chemical Physics, 2019, 21, 9246-9254.	1.3	19
89	Structure and tuneable luminescence in polymeric zinc compounds based on 3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole. Polyhedron, 2020, 191, 114768.	1.0	19
90	Benzoselenophenylpyridine platinum complexes: green <i>versus</i> red phosphorescence towards hybrid OLEDs. Dalton Transactions, 2020, 49, 3393-3397.	1.6	19

#	Article	IF	Citations
91	Tripyrrin-armed isosmaragdyrins: synthesis, heterodinuclear coordination, and protonation-triggered helical inversion. Chemical Science, 2020, 11, 2790-2795.	3.7	19
92	Structure and excitation-dependent emission of novel zinc complexes with pyridyltriazoles. RSC Advances, 2019, 9, 22143-22152.	1.7	18
93	When are Antiaromatic Molecules Paramagnetic?. Journal of Physical Chemistry C, 2020, 124, 21027-21035.	1.5	18
94	Fluorenyl Indoline as an Efficient Electron Donor for Concerted Companion Dyes: Enhanced Light-Harvesting and Photocurrent. ACS Applied Materials & Enhanced, 2021, 13, 49828-49839.	4.0	18
95	Integrating Timeâ€Resolved Imaging Information by Singleâ€Luminophore Dual Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2020, 132, 17166-17173.	1.6	17
96	Antiâ€Aromatic versus Induced Paratropicity: Synthesis and Interrogation of a Dihydroâ€diazatrioxa[9]circulene with a Proton Placed Directly above the Central Ring. Angewandte Chemie - International Edition, 2020, 59, 5144-5150.	7.2	17
97	A computational study of aromaticity and photophysical properties of unsymmetrical azatrioxa[8]circulenes. New Journal of Chemistry, 2017, 41, 2717-2723.	1.4	16
98	Relations between the aromaticity and magnetic dipole transitions in the electronic spectra of hetero[8]circulenes. Physical Chemistry Chemical Physics, 2018, 20, 30239-30246.	1.3	16
99	The Electronic Structure of Heteroannelated Cyclooctatetraenes and their UV-Vis Absorption Spectra. Chemistry of Heterocyclic Compounds, 2014, 50, 349-363.	0.6	15
100	Study of structure and spectral characteristics of the binuclear zinc complex with (E)-2-({2-[3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl]phenylimino}methyl)phenol. Russian Journal of General Chemistry, 2011, 81, 2332-2344.	0.3	13
101	Visualizing Material Processing via Photoexcitation-Controlled Organic-Phase Aggregation-Induced Emission. Research, 2021, 2021, 9862093.	2.8	13
102	Multidimensional Structure Conformation of Persulfurated Benzene for Highly Efficient Phosphorescence. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1314-1322.	4.0	13
103	Theoretical investigation of the structure and electronic absorption spectrum of a complex zinc bis-[8-(3,5-difluorophenylsulfanylamino)quinolinate]. Optics and Spectroscopy (English Translation of) Tj ETQq1	1 0a.72 8431	4 1g BT /Ove
104	A computational study of structural and magnetic properties of bi- and trinuclear Cu(II) complexes with extremely long Cu—Cu distances. Chemical Physics, 2017, 491, 48-55.	0.9	12
105	Nucleotide Interaction with a Chitosan Layer on a Silica Surface: Establishing the Mechanism at the Molecular Level. Langmuir, 2021, 37, 1511-1520.	1.6	12
106	Stabilizing hydrogen-hydrogen interactions in cationic indopolycarbocyanine dyes. Journal of Structural Chemistry, 2011, 52, 1051-1056.	0.3	11
107	Quantum-chemical study of structure and spectral properties of triphenylamine-rhodanine dye 2-(5-(4-(diphenylamine)benzylidene)-4-oxo-2-thioxothiazolidine-3-yl) acetic acid. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 216-223.	0.2	11
108	Raman spectra of tetraoxa[8]circulenes. p-dinaphthalenodiphenylenotetrafuran and its tetraalkyl derivatives (DFT study and experiment). Journal of Applied Spectroscopy, 2012, 79, 695-707.	0.3	11

#	Article	IF	CITATIONS
109	Theoretical study of the dimerization of rhodanine in various tautomeric forms. Chemistry of Heterocyclic Compounds, 2012, 47, 1268-1279.	0.6	11
110	Structure and spectral properties of triphenylamine dye functionalized with 3,4-propylenedioxythiophene. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 112, 829-835.	0.2	11
111	Quantum-chemical investigation of the structure and electronic absorption spectra of electroluminescent zinc complexes. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.7843	140 rg BT /0	Ov er lock 10 1
112	Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study. Journal of Molecular Modeling, 2017, 23, 55.	0.8	11
113	A theoretical study of new representatives of closed- and open-circle benzofuran and benzocyclopentadienone oligomers. New Journal of Chemistry, 2018, 42, 11493-11505.	1.4	11
114	Hydrophobic boron organic polymers: Ultra-high capacity of enrichment and storage for chloroform. Chemical Engineering Journal, 2020, 385, 123827.	6.6	11
115	Flexible diphenylsulfone versus rigid dibenzothiophene-dioxide as acceptor moieties in donor-acceptor-donor TADF emitters for highly efficient OLEDs. Organic Electronics, 2020, 83, 105733.	1.4	11
116	Impact of molecular and packing structure on the charge-transport properties of hetero[8]circulenes. Journal of Materials Chemistry C, 2021, 9, 1451-1466.	2.7	11
117	Aromaticity of Heterocirculenes. Chemistry, 2021, 3, 1411-1436.	0.9	11
118	Raman spectra of alkyl-substituted azaoxa[8]circulenes: DFT calculation and experiment. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 509-521.	0.2	10
119	Temperature effects in low-frequency Raman spectra of corticosteroid hormones. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 118, 214-223.	0.2	10
120	The blue vibronically resolved electroluminescence of azatrioxa[8]circulene. Chemical Physics Letters, 2019, 732, 136667.	1.2	10
121	Impact of heteroatoms (S, Se, and Te) on the aromaticity of heterocirculenes. New Journal of Chemistry, 2019, 43, 12178-12190.	1.4	10
122	Quadrupolar Dyes Based on Highly Polarized Coumarins. Organic Letters, 2021, 23, 6770-6774.	2.4	10
123	Persistent radical pairs trigger nano-gold to highly efficiently and highly selectively drive the value-added conversion of nitroaromatics. Chem Catalysis, 2021, 1, 1118-1132.	2.9	10
124	Structure and electronic absorption spectra of isotruxene dyes for dye-sensitized solar cells: Investigation by the DFT, TDDFT, and QTAIM methods. Optics and Spectroscopy (English Translation of) Tj ETQqC) 0o02rgBT	/Owerlock 10
125	Anion-induced exchange interactions in binuclear complexes of Cu(II) with flexible hexadentate bispicolylamidrazone ligands. Chemical Physics Letters, 2016, 661, 48-52.	1.2	9
126	Quantum-chemical study of the structure and magnetic properties of mono- and binuclear Cu(II) complexes with 1,3-bis(3-(pyrimidin-2-yl)-1H-1,2,4-triazol-5-yl)propane. Russian Journal of Inorganic Chemistry, 2016, 61, 588-593.	0.3	9

#	Article	IF	CITATIONS
127	Substituent-sensitive fluorescence of sequentially N-alkylated tetrabenzotetraaza[8]circulenes. New Journal of Chemistry, 2017, 41, 7621-7625.	1.4	9
128	BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes. Dyes and Pigments, 2017, 145, 399-403.	2.0	9
129	A complete characterization of vibrational IR and Raman spectra of the highly-symmetrical octathia[8]circulene. Vibrational Spectroscopy, 2019, 100, 107-116.	1.2	9
130	N-Confused Hexapyrrolic Phlorinoid with NIR Absorption: Synthesis, Fusion, Oxidation, and Copper(II) Coordination. Organic Letters, 2020, 22, 9648-9652.	2.4	9
131	Single-layer polymeric tetraoxa[8]circulene modified by s-block metals: toward stable spin qubits and novel superconductors. Nanoscale, 2021, 13, 4799-4811.	2.8	9
132	Antiâ€Aromatic versus Induced Paratropicity: Synthesis and Interrogation of a Dihydroâ€diazatrioxa[9]circulene with a Proton Placed Directly above the Central Ring. Angewandte Chemie, 2020, 132, 5182-5188.	1.6	8
133	Photoinduced Radical Emission in a Coassembly System. Angewandte Chemie, 2021, 133, 24035.	1.6	8
134	Theoretical study of the conformational structure and thermodynamic properties of 5-(4-oxo-1,3-thiazolidine-2-ylidene)-rhodanine and ethyl-5-(4-oxo-1,3-thiazolidine-2-ylidene)-rhodanine-3-acetic acid as acceptor groups of indoline dyes. Journal of Structural Chemistry, 2010, 51, 817-823.	0.3	7
135	Absolute effective cross sections of ionization of adenine and guanine molecules by electron impact. Technical Physics, 2015, 60, 1430-1436.	0.2	7
136	Dualâ€Phase Thermally Activated Delayed Fluorescence Luminogens: A Material for Timeâ€Resolved Imaging Independent of Probe Pretreatment and Probe Concentration. Angewandte Chemie, 2020, 132, 7618-7624.	1.6	7
137	Dianthracenylazatrioxa[8]circulene: Synthesis, Characterization and Application in OLEDs. Chemistry - A European Journal, 2021, 27, 11609-11617.	1.7	7
138	Polymorph acceptor-based triads with photoinduced TADF for UV sensing. Chemical Engineering Journal, 2021, 425, 131549.	6.6	7
139	Making Nitronaphthalene Fluoresce. Journal of Physical Chemistry Letters, 2021, 12, 10295-10303.	2.1	7
140	Odd-Number Cyclo[<i>n</i>]Carbons Sustaining Alternating Aromaticity. Journal of Physical Chemistry A, 2022, 126, 2445-2452.	1.1	7
141	Structure and intramolecular stabilization of geometric isomers of Bi- and trithiazolidine-4-ones and their methyl derivatives: A DFT and QTAIM study. Journal of Structural Chemistry, 2012, 53, 428-435.	0.3	6
142	Structure and spectral and luminescence properties of the trinuclear zinc complex with (E)-5-((2,6-diethylphenylimino)methyl)-2-methylquinolin-8-ol: Experimental and DFT study. Russian Journal of Inorganic Chemistry, 2015, 60, 1560-1567.	0.3	6
143	Comparative study of the structural and spectral properties of tetraaza- and tetraoxaannelated tetracirculenes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 523-540.	0.2	6
144	Vibronic absorption spectra of the angular fused bisindolo- and biscarbazoloanthracene blue fluorophores for OLED applications. Chemical Physics, 2018, 513, 105-111.	0.9	6

#	Article	IF	Citations
145	Can attachment of tert-butyl substituents to methoxycarbazole moiety induce efficient TADF in diphenylsulfone-based blue OLED emitters?. Organic Electronics, 2020, 86, 105894.	1.4	6
146	Less is more: On the effect of benzannulation on solid-state emission of difluoroborates. Journal of Materials Chemistry $C,0,$,	2.7	6
147	Large red-shifted NIR absorption in azulenyl- and iodinated-modified BODIPYs sensitive to aggregation and protonation stimuli. Dyes and Pigments, 2022, 197, 109867.	2.0	6
148	Imaging Fluorescence Blinking of a Mitochondrial Localization Probe: Cellular Localization Probes Turned into Multifunctional Sensors. Journal of Physical Chemistry B, 2022, 126, 3048-3058.	1.2	6
149	IR, Raman and UV–vis spectra of the Ru(II) cyano complexes studied by DFT. Molecular Simulation, 2011, 37, 670-677.	0.9	5
150	Synthesis and luminescent properties of copper(I) complexes with 3-pyridin-2-yl-5-(4-R-phenyl)-1H-1,2,4-triazoles. Russian Journal of Inorganic Chemistry, 2017, 62, 423-430.	0.3	5
151	Optical tuning of tetrabenzo[8]circulene derivatives through pseudorotational conformational isomerization. Dyes and Pigments, 2018, 151, 372-379.	2.0	5
152	Spontaneous Decomposition of Fluorinated Phosphorene and Its Stable Structure. Journal of Physical Chemistry Letters, 2019, 10, 7086-7092.	2.1	5
153	Computational study of aromaticity, 1H NMR spectra and intermolecular interactions of twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives. Physical Chemistry Chemical Physics, 2019, 21, 25334-25343.	1.3	5
154	Computational study of the structure and magnetic properties of the weakly-coupled tetranuclear square-planar complex of Cu(II) with a tetraporphyrin sheet. Inorganica Chimica Acta, 2019, 485, 73-79.	1.2	5
155	Structure, stability and electronic properties of one-dimensional tetrathia- and tetraselena[8]circulene-based materials: a comparative DFT study. New Journal of Chemistry, 2020, 44, 6872-6882.	1.4	5
156	Stable thiophene-embedded N-confused homoporphyrins: Partial conjugation, fusion and fluoride binding. Dyes and Pigments, 2021, 194, 109612.	2.0	5
157	A hybrid molecular sensitizer for triplet fusion upconversion. Chemical Engineering Journal, 2021, 426, 131282.	6.6	5
158	A study of the role played by the Hartree-Fock orbital exchange in the formation of the energy of the first singlet charge-transfer excited state by the example of JK-62 and JK-201 sensitizing dye molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 116, 431-437.	0.2	4
159	The effect of a heteroatom on the structure and vibrational spectra of Heteroannulated tetraphenylenes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 620-632.	0.2	4
160	Features of terahertz adsorption and Raman scattering of mineralocorticoid hormones. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1196-1201.	0.1	4
161	Analysis of the electronic, IR, and 1H NMR spectra of conjugated oligomers based on 4,4'-triphenylamine vinylene. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 121, 348-356.	0.2	4

Calculation of the optical spectra of the copper(I) complex with triphenylphosphine, iodine, and 3-pyridine-2-yl-5-phenyl-1H-1,2,4-triazole by the DFT method. Optics and Spectroscopy (English) Tj ETQq0 0 0 rgBT @verlock40 Tf 50 5

#	Article	IF	Citations
163	Identification of tautomeric intermediates of a novel thiazolylazonaphthol dye – A density functional theory study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 324-332.	2.0	4
164	Skeletal Rearrangement of Twisted Thiaâ€Norhexaphyrin: Multiply Annulated Polypyrrolic Aromatic Macrocycles. Angewandte Chemie, 2019, 131, 5986-5990.	1.6	4
165	Experimental and theoretical study of the mechanism formation of silver nanoclusters in the reduction reaction of Ag+ ions by alizarin solution. Colloids and Interface Science Communications, 2019, 29, 47-54.	2.0	4
166	Rational Synthesis of 5,5,5â€Tricyclic Fused Thiaâ€heptaphyrin (1.1.1.1.1.0) From a Helical Oligopyrrin Hybrid. Chemistry - an Asian Journal, 2020, 15, 1285-1289.	1.7	4
167	Vibrational spectra of corticosteroid hormones in the terahertz range. Proceedings of SPIE, 2010, , .	0.8	3
168	Theoretical study of the models of Ca2+ and Mg2+ ions binding by the methylidene rhodanine neutral and anionic forms. Russian Journal of General Chemistry, 2011, 81, 576-585.	0.3	3
169	Synthesis and spectroscopic characterization of a new (aryl-SCN)n polymer: Polythiocyanatohydroquinone. Journal of Molecular Structure, 2015, 1096, 15-20.	1.8	3
170	Confusion Approach Modulated Syntheses of Corrorin Parasitized Hexaphyrins (1.1.1.1.1.0) and the Oxidative Ring Cleavage Behavior. Organic Letters, 2021, 23, 8307-8311.	2.4	3
171	Water molecular bridge-induced selective dual polarization in crystals for stable multi-emitters. Chemical Science, 2022, 13, 6067-6073.	3.7	3
172	Electron density distribution in the ethylene complexes with Pd-containing bimetallic clusters. Molecular Simulation, 2013, 39, 660-669.	0.9	2
173	Quantum-chemical investigation of the structure and electronic absorption spectra of symmetric triphenylamine oligomers conjugated to vinylene, imine, azine, and ethynylene groups. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 118, 703-710.	0.2	2
174	Ab Initio Study of Phosphorescence of Hetero [8] Circulenes. Russian Physics Journal, 2019, 62, 406-410.	0.2	2
175	Photophysical Constants of the Tetraoxa[8]Circulene Molecule. Russian Physics Journal, 2019, 61, 1759-1763.	0.2	2
176	Nâ€Confused Phlorinâ€Prodigiosin Chimera: meso â€Aryl Oxidation and Ï€â€Extension Triggered by Peripheral Coordination. Angewandte Chemie, 2020, 132, 1553-1557.	1.6	2
177	Growth of Silver Nanoparticles Using Polythiocyanatohydroquinone in Aqueous Solution. Acta Chimica Slovenica, 2019, 66, 427-434.	0.2	2
178	Porphyrindiene-Based Tandem Diels–Alder Reaction for Preparing Low-Symmetry π-Extended Porphyrins with Push–Pull Skeletons. Journal of Organic Chemistry, 0, , .	1.7	2
179	Chain Length Modulated Dimerization and Cyclization of Terminal Thienyl-Blocked Oligopyrranes. Organic Letters, 2022, 24, 5428-5432.	2.4	2
180	Terahertz time-domain spectroscopy of testosterone, estradiol and estriol. , 2010, , .		1

#	Article	IF	CITATIONS
181	The Electronic Structure and Spectra of Triphenylamines Functionalized by Phenylethynyl Groups. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 57-64.	0.2	1
182	Theoretical Study of Nonradiative Energy Transfer from Exciplex to Perovskites. Russian Physics Journal, 2020, 62, 1911-1916.	0.2	1
183	Syntheses of thiophene appended N-confused phlorin isomers. Journal of Porphyrins and Phthalocyanines, 0, , A-G.	0.4	1
184	Furans and Their Benzo Derivatives: Structure. , 2020, , 190-190.		1
185	Crystal structure and Hirshfeld surfaces analysis of Heterocyclic-and circulenes. MATEC Web of Conferences, 2022, 355, 01020.	0.1	1
186	Growth of Silver Nanoparticles Using Polythiocyanatohydroquinone in Aqueous Solution. Acta Chimica Slovenica, 2019, 66, 427-434.	0.2	1
187	Electronic and Optical Properties of C ₁₆ S ₈ and C ₁₆ S ₄ Bournal of Chemistry, 0, , .	1.4	1
188	Investigation of spectral features of progesterone, 17a-hydroxyprogesterone and cortisone in THz range. , 2010, , .		0
189	Analysis of intermolecular interactions in progesterone and 17α-hydroxyprogesterone crystals., 2013,,.		0
190	Rücktitelbild: Integrating Timeâ€Resolved Imaging Information by Singleâ€Luminophore Dual Thermally Activated Delayed Fluorescence (Angew. Chem. 39/2020). Angewandte Chemie, 2020, 132, 17456-17456.	1.6	0
191	Synthesis, characterization, and spectroscopic properties of 2â€(3,5,6â€trichloroâ€1,4â€benzoquinonâ€2â€yl)â€ neoâ€fused hexaphyrin. Bulletin of the Korean Chemical Society, 0, , .	1.0	0
192	Shape Preserving Single Crystal to Amorphous to Single Crystal Polymorphic Transformation Is Possible. Journal of the American Chemical Society, 2021, 143, 20202-20206.	6.6	0