
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2737148/publications.pdf Version: 2024-02-01

CEPD A RIOREL

#	Article	IF	CITATIONS
1	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	13.7	1,444
2	Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature, 2013, 494, 497-501.	13.7	759
3	Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor. Cell, 2012, 149, 1233-1244.	13.5	615
4	Proximity among Distant Regulatory Elements at the β-Globin Locus Requires GATA-1 and FOG-1. Molecular Cell, 2005, 17, 453-462.	4.5	449
5	Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated <i>Myc</i> regulation. Genes and Development, 2013, 27, 2648-2662.	2.7	394
6	Global regulation of erythroid gene expression by transcription factor GATA-1. Blood, 2004, 104, 3136-3147.	0.6	372
7	Reactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping. Cell, 2014, 158, 849-860.	13.5	370
8	GATA-1 and Erythropoietin Cooperate to Promote Erythroid Cell Survival by Regulating bcl-xL Expression. Blood, 1999, 94, 87-96.	0.6	338
9	Enhancer Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping. Molecular Cell, 2016, 62, 237-247.	4.5	296
10	A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nature Medicine, 2016, 22, 987-990.	15.2	279
11	CREB-Binding Protein Acetylates Hematopoietic Transcription Factor GATA-1 at Functionally Important Sites. Molecular and Cellular Biology, 1999, 19, 3496-3505.	1.1	234
12	Unlinking an IncRNA from Its Associated cis Element. Molecular Cell, 2016, 62, 104-110.	4.5	216
13	Tissue-Specific Mitotic Bookmarking by Hematopoietic Transcription Factor GATA1. Cell, 2012, 150, 725-737.	13.5	215
14	Exchange of GATA Factors Mediates Transitions in Looped Chromatin Organization at a Developmentally Regulated Gene Locus. Molecular Cell, 2008, 29, 232-242.	4.5	192
15	Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E159-68.	3.3	190
16	Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Research, 2009, 19, 2172-2184.	2.4	184
17	Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature, 2019, 576, 158-162.	13.7	167
18	SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood, 2009, 113, 2191-2201.	0.6	158

#	Article	IF	CITATIONS
19	Long-range enhancer activity determines <i>Myc</i> sensitivity to Notch inhibitors in T cell leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4946-53.	3.3	151
20	Context-dependent regulation of GATA-1 by friend of GATA-1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 476-481.	3.3	123
21	Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science, 2018, 361, 285-290.	6.0	119
22	Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation. Molecular Cell, 2019, 73, 519-532.e4.	4.5	118
23	The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries. Molecular Cell, 2017, 66, 102-116.e7.	4.5	114
24	Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element. Genes and Development, 2017, 31, 1704-1713.	2.7	113
25	Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. Genome Research, 2011, 21, 1659-1671.	2.4	110
26	Structural Basis and Specificity of Acetylated Transcription Factor GATA1 Recognition by BET Family Bromodomain Protein Brd3. Molecular and Cellular Biology, 2011, 31, 2632-2640.	1.1	106
27	Genome accessibility is widely preserved and locally modulated during mitosis. Genome Research, 2015, 25, 213-225.	2.4	103
28	Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics and Chromatin, 2015, 8, 16.	1.8	100
29	A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages. Blood, 2016, 127, e24-e34.	0.6	94
30	Functions of BET proteins in erythroid gene expression. Blood, 2015, 125, 2825-2834.	0.6	93
31	A hyperactive transcriptional state marks genome reactivation at the mitosis–G1 transition. Genes and Development, 2016, 30, 1423-1439.	2.7	92
32	Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Research, 2014, 24, 1932-1944.	2.4	88
33	A Dementia-Associated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression. American Journal of Human Genetics, 2017, 101, 643-663.	2.6	87
34	Acetylation of GATA-1 is required for chromatin occupancy. Blood, 2006, 108, 3736-3738.	0.6	76
35	Insight into the Architecture of the NuRD Complex. Journal of Biological Chemistry, 2014, 289, 21844-21855.	1.6	75
36	Dynamic enhancer–gene body contacts during transcription elongation. Genes and Development, 2015, 29, 1992-1997.	2.7	72

#	Article	IF	CITATIONS
37	Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Research, 2014, 24, 1945-1962.	2.4	71
38	Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood, 2016, 128, 1139-1143.	0.6	69
39	The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia, 2016, 59, 2360-2368.	2.9	68
40	Distinct properties and functions of CTCF revealed by a rapidly inducible degron system. Cell Reports, 2021, 34, 108783.	2.9	53
41	Testing the super-enhancer concept. Nature Reviews Genetics, 2021, 22, 749-755.	7.7	53
42	Interrogating Histone Acetylation and BRD4 as Mitotic Bookmarks of Transcription. Cell Reports, 2019, 27, 400-415.e5.	2.9	52
43	ZNF410ÂUniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression. Molecular Cell, 2021, 81, 239-254.e8.	4.5	48
44	BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53, 1480-1492.	9.4	48
45	Spatial Genome Re-organization between Fetal and Adult Hematopoietic Stem Cells. Cell Reports, 2019, 29, 4200-4211.e7.	2.9	46
46	CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. Journal of Leukocyte Biology, 2002, 71, 545-56.	1.5	45
47	The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood, 2020, 135, 2121-2132.	0.6	42
48	The interdependence of gene-regulatory elements and the 3D genome. Journal of Cell Biology, 2019, 218, 12-26.	2.3	41
49	The BRD3 ET domain recognizes a short peptide motif through a mechanism that is conserved across chromatin remodelers and transcriptional regulators. Journal of Biological Chemistry, 2018, 293, 7160-7175.	1.6	39
50	Characterization of BRD4 during Mammalian Postmeiotic Sperm Development. Molecular and Cellular Biology, 2015, 35, 1433-1448.	1.1	38
51	An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis. Genome Research, 2020, 30, 472-484.	2.4	38
52	The Role of Bromodomain and Extraterminal Motif (BET) Proteins in Chromatin Structure. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 37-43.	2.0	37
53	The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture. Cell Reports, 2020, 33, 108450.	2.9	37
54	The tumour suppressor CHD5 forms a NuRD-type chromatin remodelling complex. Biochemical Journal, 2015, 468, 345-352.	1.7	36

#	Article	IF	CITATIONS
55	Exploiting genetic variation to uncover rules of transcription factor binding and chromatin accessibility. Nature Communications, 2018, 9, 782.	5.8	36
56	Alteration of genome folding via contact domain boundary insertion. Nature Genetics, 2020, 52, 1076-1087.	9.4	35
57	Function of GATA Factors in the Adult Mouse Liver. PLoS ONE, 2013, 8, e83723.	1.1	35
58	CTCF and transcription influence chromatin structure re-configuration after mitosis. Nature Communications, 2021, 12, 5157.	5.8	32
59	ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Molecular Cell, 2021, 81, 3604-3622.e10.	4.5	32
60	Disrupting the adult globin promoter alleviates promoter competition and reactivates fetal globin gene expression. Blood, 2022, 139, 2107-2118.	0.6	32
61	Understanding heterogeneity of fetal hemoglobin induction through comparative analysis of F and A erythroblasts. Blood, 2020, 135, 1957-1968.	0.6	30
62	Manipulating nuclear architecture. Current Opinion in Genetics and Development, 2014, 25, 1-7.	1.5	25
63	The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells. Blood Advances, 2019, 3, 1586-1597.	2.5	25
64	Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD+ biosynthesis and sustain cardiac function. , 2022, 1, 45-58.		25
65	Short Hairpin RNA Screen Reveals Bromodomain Proteins as Novel Targets in Acute Myeloid Leukemia. Cancer Cell, 2011, 20, 287-288.	7.7	22
66	Role of microRNAs in epigenetic silencing of the <i>CHD5</i> tumor suppressor gene in neuroblastomas. Oncotarget, 2016, 7, 15977-15985.	0.8	20
67	Protein Phosphatase 6C (PPP6C) Loss Significantly Raises Fetal Hemoglobin Levels and Reduces Cell Sickling. Blood, 2021, 138, 2031-2031.	0.6	18
68	Erythropoiesis provides a BRD's eye view of BET protein function. Drug Discovery Today: Technologies, 2016, 19, 23-28.	4.0	16
69	Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. Journal of Biological Chemistry, 2020, 295, 1898-1914.	1.6	15
70	HRI depletion cooperates with pharmacologic inducers to elevate fetal hemoglobin and reduce sickle cell formation. Blood Advances, 2020, 4, 4560-4572.	2.5	15
71	Ubiquitin-Specific Protease 6 Functions as a Tumor Suppressor in Ewing Sarcoma through Immune Activation. Cancer Research, 2021, 81, 2171-2183.	0.4	14
72	Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML. Molecular Cell, 2021, 81, 2332-2348.e9.	4.5	14

#	Article	IF	CITATIONS
73	GWAS to Therapy by Genome Edits?. Science, 2013, 342, 206-207.	6.0	13
74	Comparative analysis of mitosis-specific antibodies for bulk purification of mitotic populations by fluorescence-activated cell sorting. BioTechniques, 2014, 56, 90-94.	0.8	13
75	Perturbing Chromatin Structure to Understand Mechanisms of Gene Expression. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 207-212.	2.0	13
76	Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nature Genetics, 2022, 54, 874-884.	9.4	13
77	Detecting Long-Range Enhancer–Promoter Interactions by Quantitative Chromosome Conformation Capture. Methods in Molecular Biology, 2017, 1468, 51-62.	0.4	10
78	Engineering three-dimensional genome folding. Nature Genetics, 2021, 53, 602-611.	9.4	9
79	Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells. IUBMB Life, 2020, 72, 27-38.	1.5	8
80	The Identification and Structure of an N-Terminal PR Domain Show that FOG1 Is a Member of the PRDM Family of Proteins. PLoS ONE, 2014, 9, e106011.	1.1	7
81	An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching Conference. Experimental Hematology, 2015, 43, 821-837.	0.2	7
82	Chromatin architecture underpinning transcription elongation. Nucleus, 2016, 7, 1-8.	0.6	7
83	A new bookmark of the mitotic genome in embryonic stem cells. Nature Cell Biology, 2016, 18, 1124-1125.	4.6	6
84	Robust erythroid differentiation system for rhesus hematopoietic progenitor cells allowing preclinical screening of genetic treatment strategies for the hemoglobinopathies. Cytotherapy, 2018, 20, 1278-1287.	0.3	6
85	Heterogeneity of fetal hemoglobin production in adult red blood cells. Current Opinion in Hematology, 2021, 28, 164-170.	1.2	6
86	Heme-Regulated Inhibitor (HRI) Activates Transcription Factor ATF4 to Promote BCL11A Transcription and Fetal Hemoglobin Silencing. Blood, 2019, 134, 814-814.	0.6	5
87	Identification and characterization of RBM12 as a novel regulator ofÂfetal hemoglobin expression. Blood Advances, 2022, 6, 5956-5968.	2.5	5
88	Effects of sheared chromatin length on ChIP-seq quality and sensitivity. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
89	Histone H3 Lysine 9 Methylation and HP1γ Are Associated with Transcription Elongation through Mammalian Chromatin Blood, 2005, 106, 1734-1734.	0.6	3
90	Using Forced Chromatin Looping To Overcome Developmental Silencing Of Embryonic and Fetal β-Type Globin Genes In Adult Erythroid Cells. Blood, 2013, 122, 433-433.	0.6	3

#	Article	lF	CITATIONS
91	Genome Editing Recreates Hereditary Persistence of Fetal Hemoglobin in Primary Human Erythroblasts. Blood, 2015, 126, 640-640.	0.6	3
92	Regulation of Fetal Hemoglobin Expression By the VHL-HIF1α Oxygen Sensing System. Blood, 2021, 138, 574-574.	0.6	3
93	HIC2 Controls Developmental Hemoglobin Switching By Repressing BCL11A Transcription. Blood, 2021, 138, 571-571.	0.6	2
94	Control of Fetal Hemoglobin Levels By NFI Transcription Factors. Blood, 2020, 136, 54-54.	0.6	2
95	GATA-1 caught in the AKT. Blood, 2006, 107, 851a-852.	0.6	1
96	Editorial overview: Breaking open the mysteries of nuclear and chromatin organization. Current Opinion in Genetics and Development, 2021, 67, iii-vii.	1.5	1
97	Acetylation of GATA-1 Is Required for Chromatin Occupancy Blood, 2006, 108, 1179-1179.	0.6	1
98	Acetylation-Dependent Interaction of GATA-1 with the Potential Mitotic "Bookmarking―Protein Brd3 Blood, 2010, 116, 2598-2598.	0.6	1
99	Defective Production, Turnover, and Secretion of the Platelet α-Granule Protein P-Selectin In Mice with Disrupted FOG1-NuRD Interaction. Blood, 2010, 116, 547-547.	0.6	1
100	Epigenetics of Cellular Memory: Insights from the Chromatin Accessibility Landscape of the Mitotic Genome. Blood, 2014, 124, 4342-4342.	0.6	1
101	A Dynamic Intron Retention Program in the Mammalian Megakaryocyte and Erythrocyte Lineages. Blood, 2015, 126, 2380-2380.	0.6	1
102	Isolated Changes in Chromatin Accessibility and Enhancer-Promoter Contacts at the β-Globin Locus Distinguish Fetal Hemoglobin Producing F-Cells from a-Cells. Blood, 2021, 138, 855-855.	0.6	1
103	ZNF410 Uniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression. Blood, 2020, 136, 54-54.	0.6	1
104	The Acetyltransferases CBP and p300: Molecular Integrators of Hematopoietic Transcription Involved in Chromosomal Translocations. , 0, , 497-517.		0
105	Krüppeling megakaryopoiesis. Blood, 2007, 110, 3823-3824.	0.6	0
106	A Cluster to Remember. Cell, 2013, 154, 718-720.	13.5	0
107	Charting a noncoding gene for Î ³ -globin activation. Blood, 2018, 132, 1865-1867.	0.6	0
108	Identification of Cyclin D3 as a Direct Transcriptional Target of E2A Using Damid Blood, 2004, 104, 1618-1618.	0.6	0

#	Article	IF	CITATIONS
109	Genetic Modeling of Chemical Antagonists: Genome Scale Validation of Hematopoietic Disease Drug Targets by In Vivo Functional Analysis Blood, 2004, 104, 2577-2577.	0.6	0
110	GATA-1 Directly Induces Physical Proximity between the LCR and \hat{I}^2 Globin Promoter in Erythroid Cells Blood, 2004, 104, 1612-1612.	0.6	0
111	Genomic Organization, Chromatin Structure, and Transcriptional Regulation of the Murine Alpha Hemoglobin Stabilizing Protein (AHSP) Gene Blood, 2005, 106, 3633-3633.	0.6	0
112	GATA-1 Represses PU.1/Sfpi-1 Gene Transcription in Erythro-Megakaryocytic Progenitors Blood, 2007, 110, 1226-1226.	0.6	0
113	A Potential Epigenetic Bookmarking Function for the Hematopoietic Transcription Factor GATA-1 Blood, 2010, 116, 2601-2601.	0.6	Ο
114	Manipulating Higher Order Chromatin Structure of the β-Globin Locus by Targeted Tethering of a "looping―Factor. Blood, 2010, 116, 647-647.	0.6	0
115	Lineage-Specific Mitotic Bookmarking by Hematopoietic Transcription Factor GATA1. Blood, 2011, 118, 547-547.	0.6	Ο
116	Linking Transcription Factor Pathways to Disease-Causing GATA1 Mutations. Blood, 2011, 118, 2371-2371.	0.6	0
117	Dissecting the Molecular Pathways That Underlie Disease-Causing GATA1 Mutations. Blood, 2012, 120, 3439-3439.	0.6	Ο
118	Controlling Long-Range Genomic Interactions to Reprogram the Î ² -Globin Locus. Blood, 2012, 120, 280-280.	0.6	0
119	GATA1 and the BET Family Protein Brd3 Form a Mitotic Bookmarking Complex. Blood, 2012, 120, 282-282.	0.6	Ο
120	Hematopoietic Transcriptional Regulation At The Mitosis-G1 Transition. Blood, 2013, 122, 2440-2440.	0.6	0
121	Dissection of BET Protein Function in a Hematopoietic Differentiation Model. Blood, 2014, 124, 1574-1574.	0.6	Ο
122	Comparing Strategies to Reactivate Fetal Globin Expression for the Treatment of Beta-Globinopathies. Blood, 2014, 124, 333-333.	0.6	0
123	A Hyperactive Transcriptional State Marks Genome Reactivation during Mitotic Exit. Blood, 2015, 126, 48-48.	0.6	Ο
124	A Novel Regulatory Region of the p27 Locus Is Required for Normal Erythroid p27 Expression, and Produces a Long Noncoding RNA with No Detectable Function. Blood, 2015, 126, 1175-1175.	0.6	0
125	Deep Mining of Natural Genetic Variation in Erythroid Cells Reveals New Insights about In Vivo Transcription Factor Binding and Chromatin Accessibility. Blood, 2016, 128, 3879-3879.	0.6	Ο
126	The BET Protein BRD2 Cooperates with CTCF to Enforce a Transcriptional Boundary in Erythroid Cells. Blood, 2016, 128, 1034-1034.	0.6	0

#	Article	IF	CITATIONS
127	Comparison of Fetal and Adult Erythroid Chromosomal Architectures Identifies a Novel Fetal Hemoglobin Regulatory Region. Blood, 2017, 130, 774-774.	0.6	0
128	Heme-Regulated Inhibitor (HRI) Loss and Pharmacologic Treatments Cooperate to Strongly Elevate Fetal Hemoglobin and Reduce Sickle Cell Formation. Blood, 2018, 132, 721-721.	0.6	0
129	Understanding Heterogeneity of Fetal Hemoglobin Induction through Comparative Analysis of Stage-Matched F- and a-Cells. Blood, 2019, 134, 981-981.	0.6	0
130	Interrogating RNA Binding Proteins as Novel Regulators of Fetal Hemoglobin Expression. Blood, 2019, 134, 966-966.	0.6	0
131	Heme-Regulated Inhibitor (HRI) Depletion Cooperates with Pharmacologic Inducers to Strongly Elevate Fetal Hemoglobin and Reduce Sickle Cell Formation. Blood, 2019, 134, 3557-3557.	0.6	0
132	Interrogating Post-Transcriptional Mechanisms of Fetal Hemoglobin Regulation. Blood, 2021, 138, 3079-3079.	0.6	0
133	A β-Globin Locus-Intrinsic Epigenetic Mechanism Underlies Fetal Globin Production in F-Cells. Blood, 2020, 136, 16-17.	0.6	0