
Michael S Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2736906/publications.pdf Version: 2024-02-01

MICHAEL SIFE

#	Article	IF	CITATIONS
1	Diagnostic Yield of Coronary Angiography in Asymptomatic Orthotopic Liver Transplantation Candidates. Cardiovascular Revascularization Medicine, 2022, 35, 59-63.	0.8	5
2	Fractional Flow Reserve in End-Stage Liver Disease. American Journal of Cardiology, 2022, 166, 122-126.	1.6	2
3	Percutaneous Coronary Intervention With an Initial Bolus of Low-Dose Heparin in Biomarker-Negative Patients. Cardiovascular Revascularization Medicine, 2021, 23, 38-41.	0.8	1
4	Orbital Atherectomy for Treatment of Severely Calcified Coronary Artery Bifurcation Lesions: A Multicenter Analysis. Cardiovascular Revascularization Medicine, 2021, 26, 34-38.	0.8	7
5	A relationship between unrecognized anaemia and the development of type 2 diabetes mellitus in patient with cardiovascular risks. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 455-462.	1.9	0
6	Long-term outcomes of peripheral arterial disease patients with significant coronary artery disease undergoing percutaneous coronary intervention. PLoS ONE, 2021, 16, e0251542.	2.5	3
7	Pharmacodynamics and Outcomes of a De-Escalation Strategy with Half-Dose Prasugrel or Ticagrelor in East Asians Patients with Acute Coronary Syndrome: Results from HOPE-TAILOR Trial. Journal of Clinical Medicine, 2021, 10, 2699.	2.4	11
8	Percutaneous Treatment of Unprotected Left Main Disease With Thin-Strut Durable-Polymer or Early Generation Thicker-Strutted and Coated Bioabsorbable-Polymer Drug-Eluting Stents in a Large-Scale Registry. Cardiovascular Revascularization Medicine, 2021, 32, 43-49.	0.8	0
9	Assessment of Sex Differences in 5-Year Clinical Outcomes Following Endovascular Revascularization for Peripheral Artery Disease. Cardiovascular Revascularization Medicine, 2020, 21, 110-115.	0.8	10
10	Impact of diabetes mellitus on 5-year clinical outcomes following successful endovascular revascularization for peripheral artery disease. Vascular Medicine, 2020, 25, 33-40.	1.5	6
11	A randomized comparison of estimated radiation exposure between Low and conventional dose protocol during invasive coronary angiography (ERICA trial): Pilot study. European Journal of Radiology, 2020, 129, 109120.	2.6	0
12	Lower extremity revascularization via endovascular and surgical approaches: A systematic review with emphasis on combined inflow and outflow revascularization. SAGE Open Medicine, 2020, 8, 205031212092923.	1.8	16
13	Pharmacodynamic study of prasugrel or clopidogrel in non-ST-elevation acute coronary syndrome with CYP2C19 genetic variants undergoing percutaneous coronary intervention (PRAISE-GENE trial). International Journal of Cardiology, 2020, 305, 11-17.	1.7	4
14	Impact of Sex on Outcomes Among Patients With Cardiac Allograft Vasculopathy Who Undergo Percutaneous Coronary Intervention. Journal of Invasive Cardiology, 2020, 32, 453-458.	0.4	0
15	The Role of Novel Oral Anticoagulants and Antiplatelet Therapy after Percutaneous Coronary Intervention: Individualizing Therapy to Optimize Outcomes. Korean Circulation Journal, 2019, 49, 645.	1.9	3
16	Common Carotid Filter. Journal of the American College of Cardiology, 2019, 74, 840-841.	2.8	1
17	A Review of Antithrombotic Treatment in Critical Limb Ischemia After Endovascular Intervention. Cardiology and Therapy, 2019, 8, 193-209.	2.6	9
18	Direct Stenting in Patients Treated with Orbital Atherectomy: An ORBIT II Subanalysis. Cardiovascular Revascularization Medicine, 2019, 20, 454-460.	0.8	1

#	Article	IF	CITATIONS
19	Orbital Atherectomy. Interventional Cardiology Clinics, 2019, 8, 161-171.	0.4	11
20	Racial Differences in Ischaemia/Bleeding Risk Trade-Off during Anti-Platelet Therapy: Individual Patient Level Landmark Meta-Analysis from Seven RCTs. Thrombosis and Haemostasis, 2019, 119, 149-162.	3.4	107
21	Safety of Same-Day Discharge after Percutaneous Coronary Intervention with Orbital Atherectomy. Cardiovascular Revascularization Medicine, 2019, 20, 573-576.	0.8	4
22	Procedural and Long-Term Ischemic Outcomes of Tight Subtotal Occlusions Treated with Orbital Atherectomy: An ORBIT II Subanalysis. Cardiovascular Revascularization Medicine, 2019, 20, 563-568.	0.8	2
23	The Impact of Antithrombotic Regimens on Clinical Outcomes After Endovascular Intervention and Bypass Surgery for Infrapopliteal Artery Disease. Cardiology Research, 2019, 10, 255-267.	1.1	1
24	Four-Year Outcomes of Multivessel Percutaneous Coronary Intervention With Xience V Everolimus-Eluting Stents. Journal of Invasive Cardiology, 2019, 31, 240-246.	0.4	0
25	Initial Experience With GlideAssist to Facilitate Advancement of Orbital Atherectomy Prior to Plaque Modification of Severely Calcified Coronary Artery Lesions. Journal of Invasive Cardiology, 2019, 31, 331-334.	0.4	0
26	Impact of age following treatment of severely calcified coronary lesions with the orbital atherectomy system: 3-year follow-up. Cardiovascular Revascularization Medicine, 2018, 19, 655-659.	0.8	1
27	Acute procedural outcomes of orbital atherectomy for the treatment of iliac artery disease: Sub-analysis of the CONFIRM registries. Cardiovascular Revascularization Medicine, 2018, 19, 503-505.	0.8	9
28	Orbital atherectomy treatment of severely calcified native coronary lesions in patients with prior coronary artery bypass grafting: Acute and one-year outcomes from the ORBIT II trial. Cardiovascular Revascularization Medicine, 2018, 19, 498-502.	0.8	1
29	Role of Percutaneous Coronary Intervention in the Treatment of Cardiac Allograft Vasculopathy. American Journal of Cardiology, 2018, 121, 1051-1055.	1.6	15
30	Impact of diabetes mellitus on procedural and one year clinical outcomes following treatment of severely calcified coronary lesions with the orbital atherectomy system: A subanalysis of the ORBIT II study. Catheterization and Cardiovascular Interventions, 2018, 91, 1018-1025.	1.7	8
31	Orbital and rotational atherectomy during percutaneous coronary intervention for coronary artery calcification. Catheterization and Cardiovascular Interventions, 2018, 92, 61-67.	1.7	26
32	Orbital atherectomy for the treatment of small (2.5 mm) severely calcified coronary lesions: ORBIT II sub-analysis. Cardiovascular Revascularization Medicine, 2018, 19, 268-272.	0.8	1
33	Outcomes of patients with severely calcified aortoâ€ostial coronary lesions who underwent orbital atherectomy. Journal of Interventional Cardiology, 2018, 31, 15-20.	1.2	19
34	Cardiac allograft vasculopathy: A review. Catheterization and Cardiovascular Interventions, 2018, 92, E527-E536.	1.7	33
35	Coronary Orbital Atherectomy. , 2018, , 681-698.		0
36	Fractional Flow Reserve and Intravascular Ultrasound of Coronary Artery Lesions Beyond the Left Main: A Review of Literature, Reviews in Cardiovascular Medicine, 2018, 19, 1-11	1.4	2

#	Article	IF	CITATIONS
37	Acute Procedural Outcomes of Orbital Atherectomy for the Treatment of Profunda Femoris Artery Disease: Subanalysis of the CONFIRM Registries. Journal of Invasive Cardiology, 2018, 30, 177-181.	0.4	4
38	Impact of the Use of Intravascular Imaging on Patients Who Underwent Orbital Atherectomy. Journal of Invasive Cardiology, 2018, 30, 77-80.	0.4	4
39	Multicenter Registry of Real-World Patients With Severely Calcified Coronary Lesions Undergoing Orbital Atherectomy: 1-Year Outcomes. Journal of Invasive Cardiology, 2018, 30, 121-124.	0.4	6
40	One-Year Outcomes of Orbital Atherectomy of Long, Diffusely Calcified Coronary Artery Lesions. Journal of Invasive Cardiology, 2018, 30, 230-233.	0.4	2
41	Orbital Atherectomy of Severely Calcified Unprotected Left Main Coronary Artery Disease: One-Year Outcomes. Journal of Invasive Cardiology, 2018, 30, 270-274.	0.4	4
42	Outcomes of Orbital Atherectomy in Severely Calcified Small (2.5 mm) Coronary Artery Vessels. Journal of Invasive Cardiology, 2018, 30, 310-314.	0.4	1
43	Orbital atherectomy for treating de novo , severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial. Cardiovascular Revascularization Medicine, 2017, 18, 261-264.	0.8	71
44	Optimal Same-Day Platelet Inhibition in Patients Receiving Drug-Eluting Stents With or Without Previous Maintenance Thienopyridine Therapy : from the Evaluation of Platelet Inhibition in Patients Having A VerifyNow Assay (EPIPHANY) Trial. American Journal of Cardiology, 2017, 119, 991-995.	1.6	4
45	Comparison of Rotational Atherectomy Versus Orbital Atherectomy for the Treatment of Heavily Calcified Coronary Plaques. American Journal of Cardiology, 2017, 119, 1320-1323.	1.6	29
46	Acute procedural outcomes of orbital atherectomy for the treatment of common femoral artery disease: Sub-analysis of the CONFIRM Registries. Vascular Medicine, 2017, 22, 301-306.	1.5	12
47	Outcomes of patients with myocardial infarction who underwent orbital atherectomy for severely calcified lesions. Cardiovascular Revascularization Medicine, 2017, 18, 497-500.	0.8	3
48	Outcomes in Elderly Patients With Severely Calcified Coronary Lesions Undergoing Orbital Atherectomy. Journal of Interventional Cardiology, 2017, 30, 134-138.	1.2	13
49	Orbital atherectomy for the treatment of severely calcified coronary lesions: evidence, technique, and best practices. Expert Review of Medical Devices, 2017, 14, 867-879.	2.8	58
50	Safety of orbital atherectomy in patients with left ventricular systolic dysfunction. Journal of Interventional Cardiology, 2017, 30, 415-420.	1.2	5
51	Utilizing intravascular ultrasound imaging prior to treatment of severely calcified coronary lesions with orbital atherectomy: An ORBIT II subâ€analysis. Journal of Interventional Cardiology, 2017, 30, 570-576.	1.2	12
52	Predictors and Long-Term Clinical Outcome of Longitudinal Stent Deformation. Circulation: Cardiovascular Interventions, 2017, 10, .	3.9	14
53	ORBIT II subâ€analysis: Impact of impaired renal function following treatment of severely calcified coronary lesions with the Orbital Atherectomy System. Catheterization and Cardiovascular Interventions, 2017, 89, 841-848.	1.7	7
54	Current State of the Art in Approaches to Saphenous Vein Graft Interventions. Interventional Cardiology Review, 2017, 12, 85.	1.6	14

#	Article	IF	CITATIONS
55	Orbital atherectomy treatment of severely calcified coronary lesions in patients with impaired left ventricular ejection fraction: one-year outcomes from the ORBIT II study. EuroIntervention, 2017, 13, 329-337.	3.2	10
56	Impact of Impaired Renal Function in Patients With Severely Calcified Coronary Lesions Treated With Orbital Atherectomy. Journal of Invasive Cardiology, 2017, 29, 203-206.	0.4	2
57	Incidence of Bradycardia and Outcomes of Patients Who Underwent Orbital Atherectomy Without a Temporary Pacemaker. Journal of Invasive Cardiology, 2017, 29, 59-62.	0.4	3
58	"Single-Operator" Technique for Advancing the Orbital Atherectomy Device. Journal of Invasive Cardiology, 2017, 29, 92-95.	0.4	2
59	Outcomes of Patients With a History of Coronary Artery Bypass Grafting Who Underwent Orbital Atherectomy for Severe Coronary Artery Calcification. Journal of Invasive Cardiology, 2017, 29, 359-362.	0.4	1
60	Percutaneous Coronary Intervention for Coronary Bifurcation Lesions. Reviews in Cardiovascular Medicine, 2017, 18, 59-66.	1.4	5
61	Comparison of Heparin and Bivalirudin in Patients Undergoing Orbital Atherectomy. Journal of Invasive Cardiology, 2017, 29, 397-400.	0.4	0
62	Gender differences in acute and 30â€day outcomes after orbital atherectomy treatment of <i>de novo</i> , severely calcified coronary lesions. Catheterization and Cardiovascular Interventions, 2016, 87, 671-677.	1.7	11
63	Impact of coronary artery calcification in percutaneous coronary intervention with paclitaxelâ€eluting stents: Twoâ€year clinical outcomes of paclitaxelâ€eluting stents in patients from the <scp>ARRIVE</scp> program. Catheterization and Cardiovascular Interventions, 2016, 88, 891-897.	1.7	50
64	Bleeding Complications Before Angiography in Non–ST-Segment Elevation AcuteÂCoronary Syndrome Patients. Journal of the American College of Cardiology, 2016, 68, 2619-2621.	2.8	1
65	Thienopyridine reloading in clopidogrel-loaded patients undergoing percutaneous coronary interventions: The PRAISE study. International Journal of Cardiology, 2016, 222, 639-644.	1.7	4
66	Realâ€World Multicenter Registry of Patients with Severe Coronary Artery Calcification Undergoing Orbital Atherectomy. Journal of Interventional Cardiology, 2016, 29, 357-362.	1.2	41
67	Outcomes in Diabetic Patients Undergoing Orbital Atherectomy System. Journal of Interventional Cardiology, 2016, 29, 491-495.	1.2	8
68	Twoâ€year outcomes after treatment of severely calcified coronary lesions with the orbital atherectomy system and the impact of stent types: Insight from the ORBIT II trial. Catheterization and Cardiovascular Interventions, 2016, 88, 369-377.	1.7	27
69	Impact of lesion location on procedural and acute angiographic outcomes in patients with critical limb ischemia treated for peripheral artery disease with orbital atherectomy: A CONFIRM registries subanalysis. Catheterization and Cardiovascular Interventions, 2016, 87, 440-445.	1.7	13
70	In-stent Restenosis. Interventional Cardiology Clinics, 2016, 5, 211-220.	0.4	37
71	The New Era of Interventional Cardiology: Tackling Complex Coronary Intervention. Interventional Cardiology Clinics, 2016, 5, xi.	0.4	0
72	Characterization of Cardiac Troponin Elevation in the Setting of Pediatric Supraventricular Tachycardia. Pediatric Cardiology, 2016, 37, 392-398.	1.3	6

#	Article	IF	CITATIONS
73	The Impact and Pathophysiologic Consequences of Coronary Artery Calcium Deposition in Percutaneous Coronary Interventions. Journal of Invasive Cardiology, 2016, 28, 160-7.	0.4	41
74	Coronary Artery Perforation Following Percutaneous Coronary Intervention. Journal of Invasive Cardiology, 2016, 28, 122-31.	0.4	16
75	Outcomes After Orbital Atherectomy of Severely Calcified Left Main Lesions: Analysis of the ORBIT II Study. Journal of Invasive Cardiology, 2016, 28, 364-9.	0.4	2
76	Percutaneous Coronary Intervention in Severely Calcified Unprotected Left Main Coronary Artery Disease: Initial Experience With Orbital Atherectomy. Journal of Invasive Cardiology, 2016, 28, 147-50.	0.4	8
77	Novel Technique of Advancing the Rotational Atherectomy Device: "Single-Operator" Technique. Journal of Invasive Cardiology, 2016, 28, 183-6.	0.4	5
78	Adoption of Routine Ultrasound Guidance for Femoral Arterial Access for Cardiac Catheterization. Journal of Invasive Cardiology, 2016, 28, 311-4.	0.4	16
79	Gender-Based Differences in Outcomes After Orbital Atherectomy for the Treatment of De Novo Severely Calcified Coronary Lesions. Journal of Invasive Cardiology, 2016, 28, 440-443.	0.4	2
80	Achieving Safe Femoral Arterial Access. Current Cardiology Reports, 2015, 17, 44.	2.9	3
81	Is Heparin an Acceptable Anticoagulant When Glycoprotein IIb/IIIa Inhibitors AreÂNot Used?. JACC: Cardiovascular Interventions, 2015, 8, 223-224.	2.9	0
82	Orbital Atherectomy for Treating De Novo Severely Calcified Coronary Narrowing (1-Year Results) Tj ETQq0 0 0	rgBT /Over 1.6	rlocန္ 10 Tf 50
83	Pooled Analysis of the CONFIRM Registries. Journal of Endovascular Therapy, 2015, 22, 57-62.	1.5	17
84	Percutaneous coronary intervention for acute myocardial infarction due to unprotected left main coronary artery occlusion. Catheterization and Cardiovascular Interventions, 2015, 85, 416-420.	1.7	15
85	Myocardial Bridging: An Up-to-Date Review. Journal of Invasive Cardiology, 2015, 27, 521-8.	0.4	95
86	Impact of Advanced Age on Procedural and Acute Angiographic Outcomes in Patients Treated for Peripheral Artery Disease With Orbital Atherectomy: A CONFIRM Registries Subanalysis. Journal of Invasive Cardiology, 2015, 27, 381-6.	0.4	5
87	Lowâ€ <scp>D</scp> ose Heparin for Elective Percutaneous Coronary Intervention. Journal of Interventional Cardiology, 2014, 27, 58-62.	1.2	6
88	Pooled Analysis of the CONFIRM Registries: Safety Outcomes in Diabetic Patients Treated With Orbital Atherectomy for Peripheral Artery Disease. Journal of Endovascular Therapy, 2014, 21, 258-265.	1.5	11
89	Meta-Analysis of Randomized Trials of Postconditioning in ST-Elevation Myocardial Infarction. American Journal of Cardiology, 2014, 114, 946-952.	1.6	13
90	Minimizing femoral artery access complications during percutaneous coronary intervention: A comprehensive review. Catheterization and Cardiovascular Interventions, 2014, 84, 62-69.	1.7	39

#	Article	IF	CITATIONS
91	Opposition: Unfractionated heparin should no longer be used in the catheterization laboratory. ASEAN Heart Journal: Official Journal of the ASEAN Federation of Cardiology, 2014, 22, 7.	0.0	2
92	Pooled analysis of the CONFIRM Registries: outcomes in renal disease patients treated for peripheral arterial disease using orbital atherectomy. Journal of Invasive Cardiology, 2014, 26, 350-4.	0.4	1
93	Clinical outcomes in the percutaneous coronary intervention of in-stent restenosis with everolimus-eluting stents. Journal of Invasive Cardiology, 2014, 26, 420-6.	0.4	4
94	Cardiovascular Complications of Radiotherapy. American Journal of Cardiology, 2013, 112, 1688-1696.	1.6	82
95	Comparison of sirolimus-, paclitaxel-, and everolimus-eluting stent in unprotected left main coronary artery percutaneous coronary intervention. Journal of the Saudi Heart Association, 2013, 25, 75-78.	0.4	0
96	The use of percutaneous left ventricular assist device in high-risk percutaneous coronary intervention and cardiogenic shock. Reviews in Cardiovascular Medicine, 2013, 14, e144-9.	1.4	0
97	Long-Term Outcomes of Heart Transplantation Recipients With Transplant Coronary Artery Disease Who Develop In-Stent Restenosis After Percutaneous Coronary Intervention. American Journal of Cardiology, 2012, 109, 1729-1732.	1.6	13
98	Percutaneous revascularization for left main coronary artery compression from pulmonary artery enlargement due to pulmonary hypertension. Reviews in Cardiovascular Medicine, 2012, 13, e32-6.	1.4	1
99	Long-term outcomes of percutaneous coronary intervention in transplant coronary artery disease in pediatric heart transplant recipients. Journal of Invasive Cardiology, 2012, 24, 278-81.	0.4	4
100	Multicenter international registry of unprotected left main coronary artery percutaneous coronary intervention with everolimus-eluting stents. Journal of Invasive Cardiology, 2012, 24, 316-9.	0.4	0
101	Longâ€ŧerm outcomes of elective drugâ€eluting stenting of the unprotected left main coronary artery in patients with normal left ventricular function. Catheterization and Cardiovascular Interventions, 2011, 77, 945-951.	1.7	4
102	Two-year clinical outcomes of paclitaxel-eluting stents for in-stent restenosis in patients from the ARRIVE programme. EuroIntervention, 2011, 7, 314-322.	3.2	1
103	Cardiac allograft vasculopathy. Reviews in Cardiovascular Medicine, 2011, 12, 143-52.	1.4	8
104	Comparison by Meta-Analysis of Drug-Eluting Stents and Bare Metal Stents for Saphenous Vein Graft Intervention. American Journal of Cardiology, 2010, 105, 1076-1082.	1.6	49
105	Meta-Analysis of Clinical Studies Comparing Coronary Artery Bypass Grafting With Percutaneous Coronary Intervention and Drug-Eluting Stents in Patients With Unprotected Left Main Coronary Artery Narrowings. American Journal of Cardiology, 2010, 105, 1070-1075.	1.6	51
106	Meta-Analysis of Studies Comparing Coronary Artery Bypass Grafting With Drug-Eluting Stenting in Patients With Diabetes Mellitus and Multivessel Coronary Artery Disease. American Journal of Cardiology, 2010, 105, 1540-1544.	1.6	47
107	Comparison of Sirolimus-Eluting Stents With Paclitaxel-Eluting Stents in Saphenous Vein Graft Intervention (from a Multicenter Southern California Registry). American Journal of Cardiology, 2010, 106, 337-341.	1.6	16
108	Long-Term Outcomes After Percutaneous Coronary Intervention of Left Main Coronary Artery for Treatment of Cardiac Allograft Vasculopathy After Orthotopic Heart Transplantation. American Journal of Cardiology, 2010, 106, 1086-1089.	1.6	11

#	ARTICLE	IF	CITATIONS
109	Impact of chronic renal insufficiency on clinical outcomes in patients undergoing saphenous vein graft intervention with drugâ€eluting stents: A multicenter Southern Californian Registry. Catheterization and Cardiovascular Interventions, 2010, 76, 272-278.	1.7	9
110	Sirolimus- Versus Paclitaxel-Eluting Stents for the Treatment of Cardiac Allograft Vasculopathy. JACC: Cardiovascular Interventions, 2010, 3, 378-382.	2.9	18
111	Unprotected Left Main Coronary Disease and ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Interventions, 2010, 3, 791-795.	2.9	63
112	Multicenter international registry of unprotected left main coronary artery percutaneous coronary intervention with drugâ€eluting stents in patients with myocardial infarction. Catheterization and Cardiovascular Interventions, 2009, 73, 15-21.	1.7	37
113	Comparison of Percutaneous Coronary Intervention With Bare-Metal and Drug-Eluting Stents for Cardiac Allograft Vasculopathy. JACC: Cardiovascular Interventions, 2008, 1, 710-715.	2.9	57
114	Outcomes of nonagenarians who undergo percutaneous coronary intervention with drug-eluting stents. Catheterization and Cardiovascular Interventions, 2008, 71, 526-530.	1.7	17
115	Impact of diabetes and acute coronary syndrome on survival in patients treated with drugâ€eluting stents. Catheterization and Cardiovascular Interventions, 2008, 72, 909-914.	1.7	14
116	Outcome After Surgery and Percutaneous Intervention for Cardiogenic Shock and Left Main Disease. Annals of Thoracic Surgery, 2008, 86, 29-34.	1.3	55
117	The role of extracorporeal membrane oxygenation in emergent percutaneous coronary intervention for myocardial infarction complicated by cardiogenic shock and cardiac arrest. Journal of Invasive Cardiology, 2008, 20, E269-72.	0.4	6
118	Comparison of bypass surgery with drugâ€eluting stents for diabetic patients with multivessel disease. International Journal of Cardiology, 2007, 123, 34-42.	1.7	58
119	Stent fracture associated with drug-eluting stents: Clinical characteristics and implications. Catheterization and Cardiovascular Interventions, 2007, 69, 387-394.	1.7	160
120	Comparison of Coronary Artery Bypass Surgery With Percutaneous Coronary Intervention With Drug-Eluting Stents for Unprotected Left Main Coronary Artery Disease. Journal of the American College of Cardiology, 2006, 47, 864-870.	2.8	303
121	Bivalirudin in acute coronary syndromes and percutaneous coronary intervention. Reviews in Cardiovascular Medicine, 2006, 7 Suppl 3, S27-34.	1.4	0
122	Drug-eluting stenting is superior to bare metal stenting in saphenous vein grafts. Catheterization and Cardiovascular Interventions, 2005, 66, 507-511.	1.7	83
123	Molecular and cellular basis of restenosis after percutaneous coronary intervention: the intertwining roles of platelets, leukocytes, and the coagulation–fibrinolysis system. Journal of Pathology, 2004, 203, 861-870.	4.5	50
124	Cutting balloon angioplasty. Journal of Invasive Cardiology, 2002, 14, 552-6.	0.4	21