Dianxun Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2736665/publications.pdf

Version: 2024-02-01

25 papers 1,478 citations

394421 19 h-index 25 g-index

25 all docs

25 docs citations

25 times ranked

1893 citing authors

#	Article	IF	CITATIONS
1	Efficient ammonia recovery from wastewater using electrically conducting gas stripping membranes. Environmental Science: Nano, 2020, 7, 1759-1771.	4.3	29
2	Permeability is the Critical Factor Governing the Life Cycle Environmental Performance of Drinking Water Treatment Using Living Filtration Membranes. Environmental Science &	10.0	2
3	Hydrophobic nanostructured wood membrane for thermally efficient distillation. Science Advances, 2019, 5, eaaw3203.	10.3	81
4	Hydrophobic Gas Transfer Membranes for Wastewater Treatment and Resource Recovery. Environmental Science & Environmental Scien	10.0	64
5	Microbial electrochemical treatment of biorefinery black liquor and resource recovery. Green Chemistry, 2019, 21, 1258-1266.	9.0	28
6	Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	21
7	Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell. Journal of Power Sources, 2018, 384, 160-164.	7.8	29
8	Electrochemical Control of Redox Potential Arrests Methanogenesis and Regulates Products in Mixed Culture Electro-Fermentation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8650-8658.	6.7	54
9	Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. Journal of Colloid and Interface Science, 2018, 530, 338-344.	9.4	155
10	Nickel-Based Membrane Electrodes Enable High-Rate Electrochemical Ammonia Recovery. Environmental Science & Environmental Scie	10.0	83
11	Anaerobic membrane gas extraction facilitates thermophilic hydrogen production from <i>Clostridium thermocellum</i> . Environmental Science: Water Research and Technology, 2018, 4, 1771-1782.	2.4	19
12	Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors. Water Research, 2017, 114, 181-188.	11.3	81
13	The Microbial Electrochemical Current Accelerates Urea Hydrolysis for Recovery of Nutrients from Source-Separated Urine. Environmental Science and Technology Letters, 2017, 4, 305-310.	8.7	50
14	Hierarchical porous carbon derived from Allium cepa for supercapacitors through direct carbonization method with the assist of calcium acetate. Chinese Chemical Letters, 2017, 28, 2295-2297.	9.0	14
15	A conductive wood membrane anode improves effluent quality of microbial fuel cells. Environmental Science: Water Research and Technology, 2017, 3, 940-946.	2.4	19
16	Active H ₂ Harvesting Prevents Methanogenesis in Microbial Electrolysis Cells. Environmental Science and Technology Letters, 2016, 3, 286-290.	8.7	70
17	Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production. Water Research, 2016, 98, 183-189.	11.3	78
18	Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells. Electrochimica Acta, 2016, 206, 381-387.	5.2	102

#	Article	IF	CITATIONS
19	Simultaneous removal of multi-pollutants in an intimate integrated flocculation-adsorption fluidized bed. Environmental Science and Pollution Research, 2015, 22, 3794-3802.	5.3	6
20	Gypsum scaling in pressure retarded osmosis: Experiments, mechanisms and implications. Water Research, 2014, 48, 387-395.	11.3	138
21	Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms. Applied Microbiology and Biotechnology, 2014, 98, 5737-5745.	3.6	18
22	Evaluation of a submerged membrane bioreactor (SMBR) coupled with chlorine disinfection for municipal wastewater treatment and reuse. Desalination, 2013, 313, 134-139.	8.2	35
23	Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): Implications for PRO process operation. Journal of Membrane Science, 2013, 445, 170-182.	8.2	179
24	Preparation of carbon-sensitized and Fe–Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Applied Catalysis B: Environmental, 2012, 126, 121-133.	20.2	83
25	Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported and Er3+:YFeO3-doped TiO2 photocatalyst. Journal of Hazardous Materials, 2012, 199-200, 301-308.	12.4	40