Gregory Beaugrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2735955/publications.pdf

Version: 2024-02-01

13099 15732 17,089 178 68 125 citations h-index g-index papers 181 181 181 13647 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Morphological traits, niche-environment interaction and temporal changes in diatoms. Progress in Oceanography, 2022, 201, 102747.	3.2	10
2	Seasonality and interannual variability of copepods in the Western English Channel, Celtic Sea, Bay of Biscay, and Cantabrian Sea with a special emphasis to <i>Calanus helgolandicus</i> and <i>Acartia clausi</i> lCES Journal of Marine Science, 2022, 79, 727-740.	2.5	4
3	Stepping stones towards Antarctica: Switch to southern spawning grounds explains an abrupt range shift in krill. Global Change Biology, 2022, 28, 1359-1375.	9.5	21
4	The species chromatogram, a new graphical method to represent, characterize, and compare the ecological niches of different species. Ecology and Evolution, 2022, 12, e8830.	1.9	7
5	Expected contraction in the distribution ranges of demersal fish of high economic value in the Mediterranean and European Seas. Scientific Reports, 2022, 12, .	3.3	6
6	Climate variability and multi-decadal diatom abundance in the Northeast Atlantic. Communications Earth & Environment, 2022, 3, .	6.8	15
7	European small pelagic fish distribution under global change scenarios. Fish and Fisheries, 2021, 22, 212-225.	5.3	43
8	Plankton biogeography in the North Atlantic Ocean and its adjacent seas: Species assemblages and environmental signatures. Ecology and Evolution, 2021, 11, 5135-5149.	1.9	5
9	Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. Science Advances, 2021, 7, .	10.3	20
10	North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift. Communications Biology, 2021, 4, 644.	4.4	15
11	Overwintering distribution, inflow patterns and sustainability of Calanus finmarchicus in the North Sea. Progress in Oceanography, 2021, 194, 102567.	3.2	12
12	Citizens and scientists collect comparable oceanographic data: measurements of ocean transparency from the Secchi Disk study and science programmes. Scientific Reports, 2021, 11, 15499.	3.3	9
13	Testing Bergmann's rule in marine copepods. Ecography, 2021, 44, 1283-1295.	4.5	28
14	Seasonal Variations in the Biodiversity, Ecological Strategy, and Specialization of Diatoms and Copepods in a Coastal System With Phaeocystis Blooms: The Key Role of Trait Trade-Offs. Frontiers in Marine Science, 2021, 8, .	2.5	7
15	Sea life (pelagic ecosystems)., 2021,, 409-425.		O
16	Annual phytoplankton succession results from niche-environment interaction. Journal of Plankton Research, 2021, 43, 85-102.	1.8	21
17	Modelling European small pelagic fish distribution: Methodological insights. Ecological Modelling, 2020, 416, 108902.	2.5	28
18	Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems. Surveys in Geophysics, 2020, 41, 1237-1284.	4.6	16

#	Article	IF	Citations
19	Spatial distributions and seasonality of four Calanus species in the Northeast Atlantic. Progress in Oceanography, 2020, 185, 102344.	3.2	29
20	An open-source framework to model present and future marine species distributions at local scale. Ecological Informatics, 2020, 59, 101130.	5.2	14
21	The mathematical influence on global patterns of biodiversity. Ecology and Evolution, 2020, 10, 6494-6511.	1.9	12
22	Phenological shuffling of major marine phytoplankton groups over the last six decades. Diversity and Distributions, 2020, 26, 536-548.	4.1	14
23	Temperatureâ€mediated changes in zooplankton body size: large scale temporal and spatial analysis. Ecography, 2020, 43, 581-590.	4.5	36
24	A Global Plankton Diversity Monitoring Program. Frontiers in Marine Science, 2019, 6, .	2.5	57
25	Satellite-based indicator of zooplankton distribution for global monitoring. Scientific Reports, 2019, 9, 4732.	3.3	35
26	An ecological partition of the Atlantic Ocean and its adjacent seas. Progress in Oceanography, 2019, 173, 86-102.	3.2	15
27	Prediction of unprecedented biological shifts in the global ocean. Nature Climate Change, 2019, 9, 237-243.	18.8	80
28	Ocean community warming responses explained by thermal affinities and temperature gradients. Nature Climate Change, 2019, 9, 959-963.	18.8	134
29	Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Science Advances, 2019, 5, eaar6993.	10.3	58
30	How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations. Annual Review of Marine Science, 2018, 10, 169-197.	11.6	91
31	Global biogeochemical provinces of the mesopelagic zone. Journal of Biogeography, 2018, 45, 500-514.	3.0	44
32	Marine biodiversity and the chessboard of life. PLoS ONE, 2018, 13, e0194006.	2.5	18
33	Forecasting climate-driven changes in the geographical range of the European anchovy (Engraulis) Tj ETQq $1\ 1\ 0$.	784314 rg 2.5	:BT ₁₈ Overlock
34	Methods for the Study of Marine Biodiversity., 2017,, 129-163.		34
35	Estimation of the Potential Detection of Diatom Assemblages Based on Ocean Color Radiance Anomalies in the North Sea. Frontiers in Marine Science, 2017, 4, .	2.5	12
36	Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research. PLoS ONE, 2017, 12, e0186092.	2.5	20

#	Article	IF	CITATIONS
37	Weakening of the subpolar gyre as a key driver of North Atlantic seabird demography: a case study with Brünnich's guillemots in Svalbard. Marine Ecology - Progress Series, 2017, 563, 1-11.	1.9	18
38	Sea Life (Pelagic Ecosystems)., 2016,, 167-182.		0
39	Quasi-deterministic responses of marine species to climate change. Climate Research, 2016, 69, 117-128.	1.1	11
40	Global impacts of the 1980s regime shift. Global Change Biology, 2016, 22, 682-703.	9.5	225
41	From species distributions to ecosystem structure and function: A methodological perspective. Ecological Modelling, 2016, 334, 78-90.	2.5	21
42	Reliability of spatial and temporal patterns of C. finmarchicus inferred from the CPR survey. Journal of Marine Systems, 2016, 153, 18-24.	2.1	10
43	Climate influence on <i>Vibrio</i> and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5062-71.	7.1	316
44	Climate change and the ash dieback crisis. Scientific Reports, 2016, 6, 35303.	3.3	47
45	Environmental Impacts—Marine Ecosystems. Regional Climate Studies, 2016, , 241-274.	1.2	7
46	Novel lineage patterns from an automated water sampler to probe marine microbial biodiversity with ships of opportunity. Progress in Oceanography, 2015, 137, 409-420.	3.2	21
47	Future vulnerability of marine biodiversity compared with contemporary and past changes. Nature Climate Change, 2015, 5, 695-701.	18.8	120
48	Uncertainties in the projection of species distributions related to general circulation models. Ecology and Evolution, 2015, 5, 1100-1116.	1.9	107
49	Climate-induced range shifts of the American jackknife clam Ensis directus in Europe. Biological Invasions, 2015, 17, 725-741.	2.4	26
50	The Continuous Plankton Recorder survey: How can long-term phytoplankton datasets contribute to the assessment of Good Environmental Status?. Estuarine, Coastal and Shelf Science, 2015, 162, 88-97.	2.1	42
51	Theoretical basis for predicting climate-induced abrupt shifts in the oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130264.	4.0	44
52	Warming shelf seas drive the subtropicalization of European pelagic fish communities. Global Change Biology, 2015, 21, 144-153.	9.5	96
53	Marine regime shifts around the globe: theory, drivers and impacts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130260.	4.0	102
54	A holistic view of marine regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130279.	4.0	131

#	Article	IF	CITATIONS
55	Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130272.	4.0	72
56	Multidecadal spatial reorganisation of plankton communities in the North East Atlantic. Journal of Marine Systems, 2015, 142, 16-24.	2.1	12
57	Multidecadal Atlantic climate variability and its impact on marine pelagic communities. Journal of Marine Systems, 2014, 133, 55-69.	2.1	47
58	Oceanographic changes and exploitation drive the spatioâ€temporal dynamics of <scp>A</scp> tlantic bluefin tuna <i>(Thunnus thynnus)</i>). Fisheries Oceanography, 2014, 23, 147-156.	1.7	59
59	Marine biological shifts and climate. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133350.	2.6	52
60	Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea. Journal of Marine Systems, 2014, 129, 189-202.	2.1	31
61	Multiâ€decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change. Global Change Biology, 2014, 20, 140-146.	9.5	48
62	Pelagic Ecosystems and Climate Change. , 2014, , 141-150.		3
63	Detecting plankton shifts in the North Sea: a new abrupt ecosystem shift between 1996 and 2003. Marine Ecology - Progress Series, 2014, 502, 85-104.	1.9	44
64	Changes in the distribution of copepods in the Gironde estuary: A warming and marinisation consequence?. Estuarine, Coastal and Shelf Science, 2013, 134, 150-161.	2.1	32
65	Climate-Caused Abrupt Shifts in a European Macrotidal Estuary. Estuaries and Coasts, 2013, 36, 1193-1205.	2.2	38
66	Long-term responses of North Atlantic calcifying plankton to climate change. Nature Climate Change, 2013, 3, 263-267.	18.8	85
67	Food web indicators under the Marine Strategy Framework Directive: From complexity to simplicity?. Ecological Indicators, 2013, 29, 246-254.	6.3	99
68	Evaluating marine ecosystem health: Case studies of indicators using direct observations and modelling methods. Ecological Indicators, 2013, 24, 353-365.	6.3	135
69	Rapid climatic driven shifts of diatoms at high latitudes. Remote Sensing of Environment, 2013, 132, 195-201.	11.0	45
70	All plankton sampling systems underestimate abundance: Response to "Continuous plankton recorder underestimates zooplankton abundance―by J.W. Dippner and M. Krause. Journal of Marine Systems, 2013, 128, 240-242.	2.1	22
71	Climate, copepods and seabirds in the boreal Northeast Atlantic – current state and future outlook. Global Change Biology, 2013, 19, 364-372.	9.5	50
72	Towards an understanding of the pattern of biodiversity in the oceans. Global Ecology and Biogeography, 2013, 22, 440-449.	5.8	57

#	Article	IF	CITATIONS
73	Extension of the match-mismatch hypothesis to predator-controlled systems. Marine Ecology - Progress Series, 2013, 474, 43-52.	1.9	26
74	Applying the concept of the ecological niche and a macroecological approach to understand how climate influences zooplankton: Advantages, assumptions, limitations and requirements. Progress in Oceanography, 2013, 111, 75-90.	3.2	36
75	Population dynamics in lesser black-backed gulls in the Netherlands support a North Sea regime shift. Biology Letters, 2013, 9, 20130127.	2.3	2
76	Dynamic biogeochemical provinces in the global ocean. Global Biogeochemical Cycles, 2013, 27, 1046-1058.	4.9	162
77	Decline in Kelp in West Europe and Climate. PLoS ONE, 2013, 8, e66044.	2.5	133
78	Climatic Facilitation of the Colonization of an Estuary by Acartia tonsa. PLoS ONE, 2013, 8, e74531.	2.5	31
79	Long-Term Phenological Shifts in Raptor Migration and Climate. PLoS ONE, 2013, 8, e79112.	2.5	25
80	Understanding Long-Term Changes in Species Abundance Using a Niche-Based Approach. PLoS ONE, 2013, 8, e79186.	2.5	18
81	Marine Ecosystem Response to the Atlantic Multidecadal Oscillation. PLoS ONE, 2013, 8, e57212.	2.5	105
82	North Sea ecosystem change from swimming crabs to seagulls. Biology Letters, 2012, 8, 821-824.	2.3	32
83	Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change, 2012, 2, 271-275.	18.8	249
84	Global synchrony of an accelerating rise in sea surface temperature. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 1435-1450.	0.8	45
85	Relationships between North Atlantic salmon, plankton, and hydroclimatic change in the Northeast Atlantic. ICES Journal of Marine Science, 2012, 69, 1549-1562.	2.5	98
86	Biologging, Remotely-Sensed Oceanography and the Continuous Plankton Recorder Reveal the Environmental Determinants of a Seabird Wintering Hotspot. PLoS ONE, 2012, 7, e41194.	2.5	37
87	Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea. Journal of Plankton Research, 2012, 34, 83-91.	1.8	18
88	Biogeography of tuna and billfish communities. Journal of Biogeography, 2012, 39, 114-129.	3.0	73
89	Potential changes in benthic macrofaunal distributions from the English Channel simulated under climate change scenarios. Estuarine, Coastal and Shelf Science, 2012, 99, 153-161.	2.1	40
90	Influence of Climate Change and Trophic Coupling across Four Trophic Levels in the Celtic Sea. PLoS ONE, 2012, 7, e47408.	2.5	34

#	Article	IF	CITATIONS
91	Unanticipated biological changes and global warming. Marine Ecology - Progress Series, 2012, 445, 293-301.	1.9	40
92	A new model to assess the probability of occurrence of a species, based on presence-only data. Marine Ecology - Progress Series, 2011, 424, 175-190.	1.9	51
93	Evaluation of coastal perturbations: A new mathematical procedure to detect changes in the reference state of coastal systems. Ecological Indicators, 2011, 11, 1290-1300.	6.3	26
94	Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Global Change Biology, 2011, 17, 115-129.	9.5	92
95	Future climateâ€driven shifts in distribution of <i>Calanus finmarchicus</i> . Global Change Biology, 2011, 17, 756-766.	9.5	141
96	Is there a decline in marine phytoplankton?. Nature, 2011, 472, E6-E7.	27.8	108
97	Macrophysiology of Calanus finmarchicus in the North Atlantic Ocean. Progress in Oceanography, 2011, 91, 217-228.	3.2	48
98	Early evaluation of coastal nutrient over-enrichment: New procedures and indicators. Marine Pollution Bulletin, 2011, 62, 1751-1761.	5.0	4
99	Marine copepod diversity patterns and the metabolic theory of ecology. Oecologia, 2011, 166, 349-355.	2.0	17
100	Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications. Environmental Health, 2011, 10, 54.	4.0	75
101	Comparative analysis of European wide marine ecosystem shifts: a large-scale approach for developing the basis for ecosystem-based management. Biology Letters, 2011, 7, 484-486.	2.3	18
102	Climate change impact on Balearic shearwater through a trophic cascade. Biology Letters, 2011, 7, 702-705.	2.3	59
103	Spawning stock and recruitment in North Sea cod shaped by food and climate. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 504-510.	2.6	83
104	Change at the community level. Nature Climate Change, 2011, 1, 398-399.	18.8	3
105	Water column stability and Calanus finmarchicus. Journal of Plankton Research, 2011, 33, 119-136.	1.8	24
106	Global climate change amplifies the entry of tropical species into the eastern Mediterranean Sea. Limnology and Oceanography, 2010, 55, 1478-1484.	3.1	197
107	A multivariate approach to largeâ€scale variation in marine planktonic copepod diversity and its environmental correlates. Limnology and Oceanography, 2010, 55, 2219-2229.	3.1	31
108	Comparisons of zooplankton time series. Journal of Marine Systems, 2010, 79, 286-304.	2.1	121

#	Article	IF	CITATIONS
109	On the processes linking climate to ecosystem changes. Journal of Marine Systems, 2010, 79, 374-388.	2.1	219
110	Reply to Comment on "A new procedure to optimize the selection of groups in a classification tree: Applications for ecological data― Ecological Modelling, 2010, 221, 2739-2740.	2.5	0
111	Climate, plankton and cod. Global Change Biology, 2010, 16, 1268-1280.	9.5	129
112	Warm-water decapods and the trophic amplification of climate in the North Sea. Biology Letters, 2010, 6, 773-776.	2.3	21
113	Marine biodiversity, ecosystem functioning, and carbon cycles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10120-10124.	7.1	220
114	The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins. PLoS ONE, 2010, 5, e10633.	2.5	156
115	Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends in Ecology and Evolution, 2010, 25, 602-610.	8.7	134
116	Marine plankton phenology and life history in a changing climate: current research and future directions. Journal of Plankton Research, 2010, 32, 1355-1368.	1.8	201
117	Climate forcing on marine ecosystems. , 2010, , 11-40.		13
118	Spatial changes in the sensitivity of Atlantic cod to climate-driven effects in the plankton. Climate Research, 2010, 41, 15-19.	1.1	22
119	Climate-driven changes in coastal marine systems of western Europe. Marine Ecology - Progress Series, 2010, 408, 129-147.	1.9	74
120	Foraging distributions of little auks Alle alle across the Greenland Sea: implications of present and future Arctic climate change. Marine Ecology - Progress Series, 2010, 415, 283-293.	1.9	66
121	Cons \tilde{A} © quences des changements climatiques en milieu oc \tilde{A} © anique. VertigO: La Revue Electronique En Sciences De L'environnement, 2010, , .	0.1	4
122	Trophic amplification of climate warming. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4095-4103.	2.6	143
123	Global latitudinal variations in marine copepod diversity and environmental factors. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3053-3062.	2.6	108
124	Large bio-geographical shifts in the north-eastern Atlantic Ocean: From the subpolar gyre, via plankton, to blue whiting and pilot whales. Progress in Oceanography, 2009, 80, 149-162.	3.2	196
125	A new procedure to optimize the selection of groups in a classification tree: Applications for ecological data. Ecological Modelling, 2009, 220, 451-461.	2.5	9
126	Synergistic Effects of Climate and Fishing in a Marine Ecosystem. Ecosystems, 2009, 12, 548-561.	3.4	107

#	Article	IF	CITATIONS
127	Physiology, Ecological Niches and Species Distribution. Ecosystems, 2009, 12, 1235-1245.	3.4	78
128	Sea Life (Pelagic and Planktonic Ecosystems) as an Indicator of Climate and Global Change. , 2009, , 233-251.		5
129	Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 656-673.	1.4	147
130	Chapter 1 Impacts of the Oceans on Climate Change. Advances in Marine Biology, 2009, 56, 1-150.	1.4	110
131	Causes and projections of abrupt climateâ€driven ecosystem shifts in the North Atlantic. Ecology Letters, 2008, 11, 1157-1168.	6.4	225
132	Monitoring marine plankton ecosystems: Identification of the most relevant indicators of the state of an ecosystem. Journal of Marine Systems, 2008, 73, 138-154.	2.1	2
133	Regime shifts in marine ecosystems: detection, prediction and management. Trends in Ecology and Evolution, 2008, 23, 402-409.	8.7	339
134	The Impacts of the Oceans on Climate Change. , 2008, , .		1
135	Climateâ€induced effects on the meroplankton and the benthicâ€pelagic ecology of the North Sea. Limnology and Oceanography, 2008, 53, 1805-1815.	3.1	68
136	Resilience of the British and Irish seabird community in the twentieth century. Aquatic Biology, 2008, 4, 187-199.	1.4	19
137	Simple procedures to assess and compare the ecological niche of species. Marine Ecology - Progress Series, 2008, 363, 29-37.	1.9	20
138	A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom <i>Neodenticula seminae</i> in the North Atlantic for the first time in 800â€∫000 years. Global Change Biology, 2007, 13, 1910-1921.	9.5	157
139	Macroecological study of Centropages typicus in the North Atlantic Ocean. Progress in Oceanography, 2007, 72, 259-273.	3.2	28
140	Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas. Marine Ecology - Progress Series, 2007, 345, 147-165.	1.9	123
141	Climate effects and benthicÂ-pelagic coupling in the North Sea. Marine Ecology - Progress Series, 2007, 330, 31-38.	1.9	112
142	Biogeochemical fluxes through mesozooplankton. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	155
143	Climate Variability, Fish, and Fisheries. Journal of Climate, 2006, 19, 5009-5030.	3.2	364
144	From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology, 2006, 75, 1259-1268.	2.8	444

#	Article	IF	CITATIONS
145	Coccolithophore bloom size variation in response to the regional environment of the subarctic North Atlantic. Limnology and Oceanography, 2006, 51, 2122-2130.	3.1	83
146	Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecology Letters, 2005, 8, 952-958.	6.4	225
147	An overview of Calanus helgolandicus ecology in European waters. Progress in Oceanography, 2005, 65, 1-53.	3.2	136
148	Monitoring pelagic ecosystems using plankton indicators. ICES Journal of Marine Science, 2005, 62, 333-338.	2.5	119
149	Extending the SeaWiFS chlorophyll data set back 50 years in the northeast Atlantic. Geophysical Research Letters, 2005, 32, .	4.0	73
150	Responses of Marine Phytoplankton Populations to Fluctuations in Marine Climate., 2005,, 49-58.		10
151	The volume of water filtered by a Continuous Plankton Recorder sample: the effect of ship speed. Journal of Plankton Research, 2004, 26, 1499-1506.	1.8	30
152	Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 2004, 430, 881-884.	27.8	1,740
153	Detecting regime shifts in the ocean: Data considerations. Progress in Oceanography, 2004, 60, 143-164.	3.2	163
154	The North Sea regime shift: Evidence, causes, mechanisms and consequences. Progress in Oceanography, 2004, 60, 245-262.	3.2	480
155	Zooplankton communities. Elsevier Oceanography Series, 2004, 70, 395-423.	0.1	8
156	Monitoring marine plankton ecosystems. I: Description of an ecosystem approach based on plankton indicators. Marine Ecology - Progress Series, 2004, 269, 69-81.	1.9	31
157	Monitoring marine plankton ecosystems. II: Long-term changes in North Sea calanoid copepods in relation to hydro-climatic variability. Marine Ecology - Progress Series, 2004, 284, 35-47.	1.9	92
158	I. Introduction and methodology. Marine Ecology - Progress Series, 2004, cpr, 3-10.	1.9	14
159	An overview of statistical methods applied to CPR data. Progress in Oceanography, 2003, 58, 235-262.	3.2	37
160	Long-term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biology, 2003, 9, 801-817.	9.5	380
161	Long-term changes in copepod abundance and diversity in the north-east Atlantic in relation to fluctuations in the hydroclimatic environment. Fisheries Oceanography, 2003, 12, 270-283.	1.7	150
162	Periodic changes in the zooplankton of the North Sea during the twentieth century linked to oceanic inflow. Fisheries Oceanography, 2003, 12, 260-269.	1.7	167

#	Article	IF	CITATIONS
163	Plankton effect on cod recruitment in the North Sea. Nature, 2003, 426, 661-664.	27.8	1,012
164	the response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. Geophysical Monograph Series, 2003, , 211-234.	0.1	132
165	Phytoplankton biomass from continuous plankton recorder data: an assessment of the phytoplankton colour index. Journal of Plankton Research, 2003, 25, 697-702.	1.8	62
166	2 Interregional biological responses in the North Atlantic to hydrometeorological forcing. Large Marine Ecosystems, 2002, , 27-48.	0.2	18
167	Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science, 2002, 296, 1692-1694.	12.6	996
168	Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography. Marine Ecology - Progress Series, 2002, 232, 179-195.	1.9	125
169	Spatial dependence of calanoid copepod diversity in the North Atlantic Ocean. Marine Ecology - Progress Series, 2002, 232, 197-211.	1.9	62
170	Ocean climate anomalies and the ecology of the North Sea. Marine Ecology - Progress Series, 2002, 239, 1-10.	1.9	199
171	Long-term changes in the pelagos, benthos and fisheries of the North Sea. Senckenbergiana Maritima, 2001, 31, 107-115.	0.5	85
172	Differences in performance among four indices used to evaluate diversity in planktonic ecosystems. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2001, 24, 467-477.	0.7	23
173	Geographical distribution and seasonal and diel changes in the diversity of calanoid copepods in the North Atlantic and North Sea. Marine Ecology - Progress Series, 2001, 219, 189-203.	1.9	85
174	Spatial, seasonal and long-term fluctuations of plankton in relation to hydroclimatic features in the English Channel, Celtic Sea and Bay of Biscay. Marine Ecology - Progress Series, 2000, 200, 93-102.	1.9	106
175	Biodiversity of North Atlantic and North Sea calanoid copepods. Marine Ecology - Progress Series, 2000, 204, 299-303.	1.9	55
176	Phytoplankton change in the North Atlantic. Nature, 1998, 391, 546-546.	27.8	290
177	Is observed variability in the longâ€ŧerm results of the Continuous Plankton Recorder survey a response to climate change?. Fisheries Oceanography, 1998, 7, 282-288.	1.7	108
178	Marine Biodiversity, Climatic Variability and Global Change. , 0, , .		9