Wlaeed Younis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273582/publications.pdf Version: 2024-02-01

WILLEED YOUNIS

#	Article	IF	CITATIONS
1	Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Scientific Reports, 2015, 5, 11596.	3.3	127
2	An Overview of SARS-CoV-2 and Animal Infection. Frontiers in Veterinary Science, 2020, 7, 596391.	2.2	117
3	Antibiotic Susceptibility Determination within One Cell Cycle at Single-Bacterium Level by Stimulated Raman Metabolic Imaging. Analytical Chemistry, 2018, 90, 3737-3743.	6.5	86
4	Repurposing Non-Antimicrobial Drugs and Clinical Molecules to Treat Bacterial Infections. Current Pharmaceutical Design, 2015, 21, 4106-4111.	1.9	72
5	Repurposing celecoxib as a topical antimicrobial agent. Frontiers in Microbiology, 2015, 6, 750.	3.5	70
6	Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens. PLoS ONE, 2015, 10, e0133877.	2.5	63
7	Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci. Journal of Medicinal Chemistry, 2017, 60, 2425-2438.	6.4	46
8	Drug Repurposing for the Treatment of Staphylococcal Infections. Current Pharmaceutical Design, 2015, 21, 2089-2100.	1.9	40
9	Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE, 2017, 12, e0182821.	2.5	39
10	Diphenylurea derivatives for combating methicillin- and vancomycin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2017, 130, 73-85.	5.5	38
11	In Vitro Screening of an FDA-Approved Library Against ESKAPE Pathogens. Current Pharmaceutical Design, 2017, 23, 2147-2157.	1.9	38
12	Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence Activity That Targets Metal Ion Homeostasis. ACS Infectious Diseases, 2018, 4, 403-414.	3.8	29
13	Aryl-alkyl-lysines: Membrane-Active Fungicides That Act against Biofilms of <i>Candida albicans</i> . ACS Infectious Diseases, 2017, 3, 293-301.	3.8	25
14	Stimulated Raman Imaging Reveals Aberrant Lipogenesis as a Metabolic Marker for Azole-Resistant <i>Candida albicans</i> . Analytical Chemistry, 2017, 89, 9822-9829.	6.5	25
15	Rapid Uptake and Photodynamic Inactivation of Staphylococci by Ga(III)-Protoporphyrin IX. ACS Infectious Diseases, 2018, 4, 1564-1573.	3.8	22
16	<i>In situ</i> Detection of a Single Bacterium in Complex Environment by Hyperspectral CARS Imaging. ChemistrySelect, 2016, 1, 513-517.	1.5	19
17	Discovery and characterization of aryl isonitriles as a new class of compounds versus methicillin- and vancomycin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2015, 101, 384-390.	5.5	18
18	Investigation of aryl isonitrile compounds with potent, broad-spectrum antifungal activity. Bioorganic and Medicinal Chemistry, 2017, 25, 2926-2931.	3.0	8

WLAEED YOUNIS

#	Article	IF	CITATIONS
19	Control of Virulent Listeria monocytogenes Originating from Dairy Products and Cattle Environment Using Marine Algal Extracts, Silver Nanoparticles Thereof, and Quaternary Disinfectants. Infection and Drug Resistance, 2021, Volume 14, 2721-2739.	2.7	8
20	Label-Free Detection and Discrimination of Bacterial Pathogens Based on Hemin Recognition. Bioconjugate Chemistry, 2016, 27, 1713-1722.	3.6	6
21	Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance. Veterinary World, 2021, 14, 2410-2418.	1.7	4
22	Antibacterial activity and safety of commercial veterinary cationic steroid antibiotics and neutral superoxidized water. PLoS ONE, 2018, 13, e0193217.	2.5	3
23	Occurrence and characterization of coagulase positive and negative Staphylococci isolated from Japanese quails and broiler chickens at Qena Governorate, Egypt. SVU-International Journal of Veterinary Sciences, 2021, 4, 1-15.	0.1	2
24	Aberrant lipogenesis is a metabolic marker for azole-resistant candida albicans (Conference) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 Tf 50 542 T

25	Clinical and microbiological aspect of surgical affections associated with current epidemics in bovine. SVU-International Journal of Veterinary Sciences, 2021, 4, 11-26.	0.1	0
26	Isolation and Characterization of some Enterobacteriaceae Isolated from Early Mortalities in Japanese Quail Chicks at Qena Governorate, Egypt. Assiut Veterinary Medical Journal, 2021, 67, 19-36.	0.2	0
27	Molecular Comparison Between Resistance Genes in Staphylococcus aureus Clinically Isolated from Cattle and Camels in Southern Egypt. Advances in Animal and Veterinary Sciences, 2020, 9, .	0.2	Ο