
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2735811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neu3 Sialidase Activates the RISK Cardioprotective Signaling Pathway during Ischemia and Reperfusion Injury (IRI). International Journal of Molecular Sciences, 2022, 23, 6090.	4.1	2
2	Human Sarcopenic Myoblasts Can Be Rescued by Pharmacological Reactivation of HIF-1α. International Journal of Molecular Sciences, 2022, 23, 7114.	4.1	4
3	Brugada syndrome genetics is associated with phenotype severity. European Heart Journal, 2021, 42, 1082-1090.	2.2	59
4	The antithetic role of ceramide and sphingosineâ€lâ€phosphate in cardiac dysfunction. Journal of Cellular Physiology, 2021, 236, 4857-4873.	4.1	8
5	Novel SCN5A p.Val1667Asp Missense Variant Segregation and Characterization in a Family with Severe Brugada Syndrome and Multiple Sudden Deaths. International Journal of Molecular Sciences, 2021, 22, 4700.	4.1	5
6	Brugada Syndrome: New Insights From Cardiac Magnetic Resonance and Electroanatomical Imaging. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e010004.	4.8	7
7	Brugada Syndrome: Warning of a Systemic Condition?. Frontiers in Cardiovascular Medicine, 2021, 8, 771349.	2.4	8
8	The acidic hydrolysis of <i>N</i> -acetylneuraminic 4,5-oxazoline allows a direct functionalization of the C5 position of Neu5Ac2en (DANA). RSC Advances, 2020, 10, 162-165.	3.6	9
9	New electromechanical substrate abnormalities in high-risk patients with Brugada syndrome. Heart Rhythm, 2020, 17, 637-645.	0.7	26
10	HIF-1α Directly Controls WNT7A Expression During Myogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 593508.	3.7	6
11	Novel CineECG Derived From Standard 12-Lead ECG Enables Right Ventricle Outflow Tract Localization of Electrical Substrate in Patients With Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008524.	4.8	14
12	Novel SCN5A p.V1429M Variant Segregation in a Family with Brugada Syndrome. International Journal of Molecular Sciences, 2020, 21, 5902.	4.1	5
13	Intramolecular Lactones of Sialic Acids. International Journal of Molecular Sciences, 2020, 21, 8098.	4.1	7
14	2β-3,4-Unsaturated sialic acid derivatives: Synthesis optimization, and biological evaluation as Newcastle disease virus hemagglutinin-neuraminidase inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115563.	3.0	7
15	Single-shot morpho-functional and structural characterization of the left-ventricle in a mouse model of acute ischemia-reperfusion injury with an optimized 3D IntraGate cine FLASH sequence at 7T MR. Magnetic Resonance Imaging, 2020, 68, 127-135.	1.8	1
16	Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Current Medicinal Chemistry, 2020, 27, 3448-3462.	2.4	6
17	Role of sialidase Neu3 and ganglioside GM3 in cardiac fibroblasts activation. Biochemical Journal, 2020, 477, 3401-3415.	3.7	9
18	Comparable clinical characteristics in Brugada syndrome patients harboring SCN5A or novel SCN10A variants. Europace, 2019, 21, 1550-1558.	1.7	15

#	Article	IF	CITATIONS
19	Non-invasive assessment of the arrhythmogenic substrate in Brugada syndrome using signal-averaged electrocardiogram: clinical implications from a prospective clinical trial. Europace, 2019, 21, 1900-1910.	1.7	8
20	Novel SCN5A p.W697X Nonsense Mutation Segregation in a Family with Brugada Syndrome. International Journal of Molecular Sciences, 2019, 20, 4920.	4.1	7
21	Genotype–Phenotype Correlation in a Family with Brugada Syndrome Harboring the Novel p.Gln371* Nonsense Variant in the SCN5A Gene. International Journal of Molecular Sciences, 2019, 20, 5522.	4.1	8
22	Sphingolipid Synthesis Inhibition by Myriocin Administration Enhances Lipid Consumption and Ameliorates Lipid Response to Myocardial Ischemia Reperfusion Injury. Frontiers in Physiology, 2019, 10, 986.	2.8	16
23	Glutathione Blood Concentrations: A Biomarker of Oxidative Damage Protection during Cardiopulmonary Bypass in Children. Diagnostics, 2019, 9, 118.	2.6	5
24	Genotype/Phenotype Relationship in a Consanguineal Family With Brugada Syndrome Harboring the R1632C Missense Variant in the SCN5A Gene. Frontiers in Physiology, 2019, 10, 666.	2.8	11
25	SCN5A Nonsense Mutation and NF1 Frameshift Mutation in a Family With Brugada Syndrome and Neurofibromatosis. Frontiers in Genetics, 2019, 10, 50.	2.3	12
26	Lactonization Method To Assign the Anomeric Configuration of the 3,4-Unsaturated Congeners of <i>N</i> -Acetylneuraminic Acid. Journal of Organic Chemistry, 2019, 84, 5460-5470.	3.2	11
27	Monitoring the effectiveness of hypothermia in perinatal asphyxia infants by urinary S100B levels. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1017-1025.	2.3	5
28	S100B increases in cyanotic versus noncyanotic infants undergoing heart surgery and cardiopulmonary bypass (CPB). Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 1117-1123.	1.5	5
29	Potent Inhibitors against Newcastle Disease Virus Hemagglutininâ€Neuraminidase. ChemMedChem, 2018, 13, 236-240.	3.2	11
30	Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. International Journal of Molecular Sciences, 2018, 19, 3194.	4.1	44
31	GM1 Ganglioside Promotes Osteogenic Differentiation of Human Tendon Stem Cells. Stem Cells International, 2018, 2018, 1-8.	2.5	13
32	Calcium in Brugada Syndrome: Questions for Future Research. Frontiers in Physiology, 2018, 9, 1088.	2.8	26
33	Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation. Stem Cells International, 2018, 2018, 1-13.	2.5	10
34	Activation of the hypoxiaâ€inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes. FASEB Journal, 2017, 31, 2146-2156.	0.5	34
35	NEU3 sialidase role in activating HIF-1α in response to chronic hypoxia in cyanotic congenital heart patients. International Journal of Cardiology, 2017, 230, 6-13.	1.7	19
36	Regenerating the human heart: direct reprogramming strategies and their current limitations. Basic Research in Cardiology, 2017, 112, 68.	5.9	38

#	Article	IF	CITATIONS
37	Synthesis and chemical characterization of several perfluorinated sialic acid glycals and evaluation of their in vitro antiviral activity against Newcastle disease virus. MedChemComm, 2017, 8, 1505-1513.	3.4	10
38	Commentary: Next Generation Sequencing and Linkage Analysis for the Molecular Diagnosis of a Novel Overlapping Syndrome Characterized by Hypertrophic Cardiomyopathy and Typical Electrical Instability of Brugada Syndrome. Frontiers in Physiology, 2017, 8, 1056.	2.8	11
39	Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells International, 2016, 2016, 1-13.	2.5	10
40	Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability. Stem Cells International, 2016, 2016, 1-11.	2.5	35
41	A chemical approach to myocardial protection and regeneration. European Heart Journal Supplements, 2016, 18, E1-E7.	0.1	3
42	Effects of the pulsed electromagnetic field PST® on human tendon stem cells: a controlled laboratory study. BMC Complementary and Alternative Medicine, 2016, 16, 293.	3.7	13
43	NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes. Journal of Biological Chemistry, 2016, 291, 10615-10624.	3.4	22
44	Synthesis and Biological Evaluation of Several Dephosphonated Analogues of CMPâ€Neu5Ac as Inhibitors of GM3â€ S ynthase. Chemistry - A European Journal, 2015, 21, 14614-14629.	3.3	14
45	The Sialic Acids Waltz: Novel Stereoselective Isomerization of the 1,7‣actones of <i>N</i> â€Acetylneuraminic Acids into the Corresponding Î³â€Łactones and Back to the Free Sialic Acids. Asian Journal of Organic Chemistry, 2015, 4, 1315-1321.	2.7	9
46	Circulating S100B and Adiponectin in Children Who Underwent Open Heart Surgery and Cardiopulmonary Bypass. BioMed Research International, 2015, 2015, 1-6.	1.9	10
47	Elucidation of several neglected reactions in the GC–MS identification of sialic acids as heptafluorobutyrates calls for an urgent reassessment of previous claims. Organic and Biomolecular Chemistry, 2015, 13, 4931-4939.	2.8	9
48	Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells. Journal of Lipid Research, 2014, 55, 549-560.	4.2	33
49	Long-term results of sequential vein coronary artery bypass grafting compared with totally arterial myocardial revascularization: a propensity score-matched follow-up study. European Journal of Cardio-thoracic Surgery, 2014, 46, 1006-1013.	1.4	26
50	Molecular subtyping of metastatic melanoma based on cell ganglioside metabolism profiles. BMC Cancer, 2014, 14, 560.	2.6	30
51	Application of direct <scp>HPTLC</scp> â€ <scp>MALDI</scp> for the qualitative and quantitative profiling of neutral and acidic glycosphingolipids: The case of NEU3 overexpressing C2C12 murine myoblasts. Electrophoresis, 2014, 35, 1319-1328.	2.4	16
52	Chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines formed by cross-link of bone and synovium collagen. Organic and Biomolecular Chemistry, 2013, 11, 5747.	2.8	12
53	Being a Scientist today: are you still having fun?. Drug Discovery Today, 2013, 18, 107-109.	6.4	2
54	Identification of lysosomal sialidase NEU1 and plasma membrane sialidase NEU3 in human erythrocytes. Journal of Cellular Biochemistry, 2013, 114, 204-211.	2.6	16

#	Article	IF	CITATIONS
55	Isolation and Characterization of 2 New Human Rotator Cuff and Long Head of Biceps Tendon Cells Possessing Stem Cell–Like Self-Renewal and Multipotential Differentiation Capacity. American Journal of Sports Medicine, 2013, 41, 1653-1664.	4.2	63
56	NEU3 Sialidase Is Activated under Hypoxia and Protects Skeletal Muscle Cells from Apoptosis through the Activation of the Epidermal Growth Factor Receptor Signaling Pathway and the Hypoxia-inducible Factor (HIF)-1α. Journal of Biological Chemistry, 2013, 288, 3153-3162.	3.4	39
57	The Plasma Membrane Sialidase NEU3 Regulates the Malignancy of Renal Carcinoma Cells by Controlling β1 Integrin Internalization and Recycling. Journal of Biological Chemistry, 2012, 287, 42835-42845.	3.4	60
58	The synthetic purine reversine selectively induces cell death of cancer cells. Journal of Cellular Biochemistry, 2012, 113, 3207-3217.	2.6	18
59	NEU4L sialidase overexpression promotes βâ€catenin signaling in neuroblastoma cells, enhancing stemâ€like malignant cell growth. International Journal of Cancer, 2012, 131, 1768-1778.	5.1	22
60	MmNEU3 sialidase overâ€expression in C2C12 myoblasts delays differentiation and induces hypertrophic myotube formation. Journal of Cellular Biochemistry, 2012, 113, 2967-2978.	2.6	23
61	Stem Cells and the Right Ventricle. , 2012, , 39-46.		0
62	Cell Reprogramming: A New Chemical Approach to Stem Cell Biology and Tissue Regeneration. Current Pharmaceutical Biotechnology, 2011, 12, 146-150.	1.6	9
63	Intrinsic cell memory reinforces myogenic commitment of pericyteâ€derived iPSCs. Journal of Pathology, 2011, 223, 593-603.	4.5	71
64	Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells. Journal of Cellular Biochemistry, 2011, 112, 2006-2014.	2.6	20
65	Insulin-Like Growth Factor-1 Receptor Identifies a Pool of Human Cardiac Stem Cells With Superior Therapeutic Potential for Myocardial Regeneration. Circulation Research, 2011, 108, 1467-1481.	4.5	111
66	Reversine increases multipotent human mesenchymal cells differentiation potential. Journal of Biological Regulators and Homeostatic Agents, 2011, 25, S25-33.	0.7	7
67	Down regulation of membraneâ€bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells. International Journal of Cancer, 2010, 126, 337-349.	5.1	39
68	Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death and Differentiation, 2010, 17, 1230-1237.	11.2	42
69	Proteomic signature of reversineâ€ŧreated murine fibroblasts by 2â€D difference gel electrophoresis and MS: Possible associations with cell signalling networks. Electrophoresis, 2009, 30, 2193-2206.	2.4	14
70	Silencing of membrane-associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3. Cell Death and Differentiation, 2009, 16, 164-174.	11.2	47
71	Over-expression of mammalian sialidase NEU3 reduces Newcastle disease virus entry and propagation in COS7 cells. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 504-512.	2.4	9
72	NEU3 Sialidase Strictly Modulates GM3 Levels in Skeletal Myoblasts C2C12 Thus Favoring Their Differentiation and Protecting Them from Apoptosis. Journal of Biological Chemistry, 2008, 283, 36265-36271.	3.4	44

#	Article	IF	CITATIONS
73	Expression of Sialidase Neu2 in Leukemic K562 Cells Induces Apoptosis by Impairing Bcr-Abl/Src Kinases Signaling. Journal of Biological Chemistry, 2007, 282, 14364-14372.	3.4	47
74	Sialidase NEU3 is a peripheral membrane protein localized on the cell surface and in endosomal structures. Biochemical Journal, 2007, 408, 211-219.	3.7	81
75	Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death and Differentiation, 2006, 13, 2042-2051.	11.2	89
76	Modification of sialidase levels and sialoglycoconjugate pattern during erythroid and erytroleukemic cell differentiation. Glycoconjugate Journal, 2006, 24, 67-79.	2.7	17
77	TiF4-mediated biomimetic alkylation–cyclization cascade reaction of 2-trimethylsilylmethyl-1,5-dienes with aldehydes. Tetrahedron Letters, 2005, 46, 5803-5806.	1.4	16
78	The Plasma Membrane-associated Sialidase MmNEU3 Modifies the Ganglioside Pattern of Adjacent Cells Supporting Its Involvement in Cell-to-Cell Interactions. Journal of Biological Chemistry, 2004, 279, 16989-16995.	3.4	130
79	Palladium-Catalyzed Alkynylation. ChemInform, 2003, 34, no.	0.0	0
80	Highly Satisfactory Alkynylation of Alkenyl Halides via Pd-Catalyzed Cross-Coupling with Alkynylzincs and Its Critical Comparison with the Sonogashira Alkynylation ChemInform, 2003, 34, no.	0.0	1
81	Palladium-Catalyzed Alkynylation. Chemical Reviews, 2003, 103, 1979-2018.	47.7	1,155
82	Highly Satisfactory Alkynylation of Alkenyl Halides via Pd-Catalyzed Cross-Coupling with Alkynylzincs and Its Critical Comparison with the Sonogashira Alkynylationâ€. Organic Letters, 2003, 5, 1597-1600.	4.6	102
83	Use of Methyl Malondialdehyde as an Internal Standard for Malondialdehyde Detection: Validation by Isotope-Dilution Gas Chromatography–Mass Spectrometry. Clinical Chemistry, 2002, 48, 2266-2269.	3.2	28
84	Catalytic and selective conversion of (Z)-2-en-4-ynoic acids to either 2H-pyran-2-ones in the presence of ZnBr2 or (Z)-5-alkylidenefuran-2(5H)-ones in the presence of Ag2CO3. Tetrahedron Letters, 2002, 43, 5673-5676.	1.4	97
85	Simple and selective one-pot replacement of the N-methyl group of tertiary amines by quaternization and demethylation with sodium sulfide or potassium thioacetate: an application to the synthesis of pergolide. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2398-2403.	1.3	12
86	A practical protocol for the synthesis of 3-hydroxy-4,5-disubstituted pyridine derivatives from acyclic compounds. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2404-2408.	1.3	12
87	Highly Satisfactory Procedures for the Pd-Catalyzed Cross Coupling of Aryl Electrophiles with in Situ Generated Alkynylzinc Derivatives. Organic Letters, 2001, 3, 3111-3113.	4.6	97
88	Stereoselective Synthesis of Exocyclic Alkenes by Cu-Catalyzed Allylmagnesiation, Pd-Catalyzed Alkylation, and Ru-Catalyzed Ring-Closing Metathesis: Highly Stereoselective Synthesis of (Z)- and (E)-Î ³ -Bisabolenes. European Journal of Organic Chemistry, 2001, 2001, 3039.	2.4	28
89	TiCl4 promoted reaction of aldehydes with 1,5-dienyl allylsilanes: addition accompanied by cyclization. Tetrahedron Letters, 2000, 41, 3471-3474.	1.4	9
90	Zirconium-catalyzed carboalumination of alkynes and enynes as a route to aluminacycles and their conversion to cyclic organic compounds. Tetrahedron Letters, 1998, 39, 2503-2506.	1.4	64

#	Article	IF	CITATIONS
91	Palladium-Catalyzed Aryl–Aryl Coupling. , 0, , 311-334.		16