List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing and Manipulating the Lateral Pressure Profile in Lipid Bilayers Using Membrane-Active Peptides—A Solid-State 19F NMR Study. International Journal of Molecular Sciences, 2022, 23, 4544.	4.1	3
2	Towards in vivo photomediated delivery of anticancer peptides: Insights from pharmacokinetic and -dynamic data. Journal of Photochemistry and Photobiology B: Biology, 2022, 233, 112479.	3.8	2
3	Antibiotic Potential and Biophysical Characterization of Amphipathic β-Stranded [XZ]n Peptides With Alternating Cationic and Hydrophobic Residues. Frontiers in Medical Technology, 2021, 3, 622096.	2.5	1
4	Overlapping Properties of the Short Membrane-Active Peptide BP100 With (i) Polycationic TAT and (ii) α-helical Magainin Family Peptides. Frontiers in Cellular and Infection Microbiology, 2021, 11, 609542.	3.9	9
5	In Vivo Behavior of the Antibacterial Peptide Cyclo[RRRWFW], Explored Using a 3-Hydroxychromone-Derived Fluorescent Amino Acid. Frontiers in Chemistry, 2021, 9, 688446.	3.6	6
6	Correlation between Macroscopic Elasticity and Chain Dynamics of Natural Rubber during Vulcanization as Determined by a Unique Rheo-NMR Combination. Macromolecules, 2021, 54, 6090-6100.	4.8	5
7	Order and disorder—An integrative structure of the full-length human growth hormone receptor. Science Advances, 2021, 7, .	10.3	25
8	Chiral Resolution of Spin rossover Active Iron(II) [2x2] Grid Complexes. Chemistry - A European Journal, 2021, 27, 15171-15179.	3.3	6
9	Diarylethenâ€basierte lichtschaltbare Inhibitoren von Serinproteasen. Angewandte Chemie, 2021, 133, 21958-21964.	2.0	3
10	Diaryletheneâ€Based Photoswitchable Inhibitors of Serine Proteases. Angewandte Chemie - International Edition, 2021, 60, 21789-21794.	13.8	17
11	Membrane Interactions of Latarcins: Antimicrobial Peptides from Spider Venom. International Journal of Molecular Sciences, 2021, 22, 10156.	4.1	7
12	Membrane-Mediated Activity of Local Anesthetics. Molecular Pharmacology, 2021, 100, 502-512.	2.3	10
13	Remarkably high solvatochromism in the circular dichroism spectra of the polyproline-II conformation: limitations or new opportunities?. Physical Chemistry Chemical Physics, 2021, 23, 26931-26939.	2.8	3
14	4â€Aminophthalimide Amino Acids as Small and Environmentâ€Sensitive Fluorescent Probes for Transmembrane Peptides. ChemBioChem, 2020, 21, 618-622.	2.6	10
15	Monofluoroalkeneâ€Isostere as a ¹⁹ Fâ€NMR Label for the Peptide Backbone: Synthesis and Evaluation in Membraneâ€Bound PGLa and (KIGAKI) ₃ . Chemistry - A European Journal, 2020, 26, 1511-1517.	3.3	14
16	Shape-Memory Effect by Sequential Coupling of Functions over Different Length Scales in an Architectured Hydrogel. Biomacromolecules, 2020, 21, 680-687.	5.4	5
17	Flow charts for the systematic solid-state 19F/2H-NMR structure analysis of membrane-bound peptides. Annual Reports on NMR Spectroscopy, 2020, , 79-118.	1.5	2
18	Phosphate-dependent aggregation of [KL]n peptides affects their membranolytic activity. Scientific Reports, 2020, 10, 12300.	3.3	12

#	Article	IF	CITATIONS
19	Structural and functional characterization of the pore-forming domain of pinholin S2168. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29637-29646.	7.1	9
20	Diarylethene moiety as an enthalpy-entropy switch: photoisomerizable stapled peptides for modulating p53/MDM2 interaction. Organic and Biomolecular Chemistry, 2020, 18, 5359-5369.	2.8	14
21	Structural and Electronic Transport Properties of Fluorographene Directly Grown on Silicates for Possible Biosensor Applications. ACS Applied Nano Materials, 2020, 3, 5399-5409.	5.0	8
22	Chiral supramolecular architecture of stable transmembrane pores formed by an α-helical antibiotic peptide in the presence of lyso-lipids. Scientific Reports, 2020, 10, 4710.	3.3	10
23	Peptide drugs for photopharmacology: how much of a safety advantage can be gained by photocontrol?. Future Drug Discovery, 2020, 2, .	2.1	16
24	Terminal charges modulate the pore forming activity of cationic amphipathic helices. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183243.	2.6	17
25	Light-controllable dithienylethene-modified cyclic peptides: photoswitching the in vivo toxicity in zebrafish embryos. Beilstein Journal of Organic Chemistry, 2020, 16, 39-49.	2.2	22
26	Enhancing the activity of membrane remodeling epsin-peptide by trimerization. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127190.	2.2	12
27	Realâ€Time Observation of Diaryletheneâ€Based Photoswitches in a Cyclic Peptide Environment. ChemPhotoChem, 2019, 3, 265-265.	3.0	0
28	Molecular structure and function of myelin protein PO in membrane stacking. Scientific Reports, 2019, 9, 642.	3.3	41
29	Tetrameric Charge-Zipper Assembly of the TisB Peptide in Membranes—Computer Simulation and Experiment. Journal of Physical Chemistry B, 2019, 123, 1770-1779.	2.6	6
30	Inhibition of <i>Pseudomonas aeruginosa</i> biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentinâ€la(1â€21) <scp>NH</scp> ₂ . FEBS Journal, 2019, 286, 3874-3891.	4.7	45
31	Controlling the Uptake of Diaryletheneâ€Based Cellâ€Penetrating Peptides into Cells Using Light. ChemPhotoChem, 2019, 3, 384-391.	3.0	9
32	Realâ€Time Observation of Diaryletheneâ€Based Photoswitches in a Cyclic Peptide Environment. ChemPhotoChem, 2019, 3, 403-410.	3.0	19
33	Crown ether modified peptide interactions with model membranes‡. Supramolecular Chemistry, 2019, 31, 159-171.	1.2	2
34	Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Physical Chemistry Chemical Physics, 2019, 21, 22396-22408.	2.8	7
35	Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Scientific Reports, 2019, 9, 17938.	3.3	30
36	19F-Labeled amino acids for NMR structure analysis of membrane-bound peptides. , 2019, , 349-395.		4

#	Article	IF	CITATIONS
37	Conformationally Constrained Monoâ€Fluorinated Arginine as a Cationic Label for Solidâ€State ¹⁹ F NMR Analysis of Membraneâ€Bound Peptides. European Journal of Organic Chemistry, 2018, 2018, 3826-3833.	2.4	8
38	Transmembrane Polyproline Helix. Journal of Physical Chemistry Letters, 2018, 9, 2170-2174.	4.6	15
39	Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry - A European Journal, 2018, 24, 11245-11254.	3.3	37
40	Roles of Amphipathicity and Hydrophobicity in the Micelleâ€Driven Structural Switch of a 14â€mer Peptide Core from a Cholineâ€Binding Repeat. Chemistry - A European Journal, 2018, 24, 5825-5839.	3.3	7
41	New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 654-663.	2.6	6
42	"Force-from-lipids―gating of mechanosensitive channels modulated by PUFAs. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 158-167.	3.1	43
43	Orthogonal ¹⁹ Fâ€Labeling for Solidâ€State NMR Spectroscopy Reveals the Conformation and Orientation of Short Peptaibols in Membranes. Chemistry - A European Journal, 2018, 24, 4328-4335.	3.3	14
44	Observation of triple helix motif on electrospun collagen nanofibers and its effect on the physical and structural properties. Journal of Molecular Structure, 2018, 1151, 73-80.	3.6	27
45	Highly reactive bis-cyclooctyne-modified diarylethene for SPAAC-mediated cross-linking. Organic and Biomolecular Chemistry, 2018, 16, 8559-8564.	2.8	11
46	Structure–Activity Relationships of Photoswitchable Diarylethene-Based β-Hairpin Peptides as Membranolytic Antimicrobial and Anticancer Agents. Journal of Medicinal Chemistry, 2018, 61, 10793-10813.	6.4	41
47	Best of Two Worlds? How MD Simulations of Amphiphilic Helical Peptides in Membranes Can Complement Data from Oriented Solid-State NMR. Journal of Chemical Theory and Computation, 2018, 14, 6002-6014.	5.3	12
48	Frontispiece: Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry - A European Journal, 2018, 24, .	3.3	0
49	Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR. Journal of Physical Chemistry B, 2018, 122, 6236-6250.	2.6	12
50	Protein ORIGAMI: A program for the creation of 3D paper models of folded peptides. Biochemistry and Molecular Biology Education, 2018, 46, 403-409.	1.2	9
51	Solid-State 19F-NMR Analysis of Peptides in Oriented Biomembranes. , 2018, , 651-667.		1
52	Solid-State NMR for Studying Peptide Structures and Peptide-Lipid Interactions in Membranes. , 2018, , 1985-1996.		1
53	Challenge Integrity: The Cell-Penetrating Peptide BP100 Interferes with the Auxin–Actin Oscillator. Plant and Cell Physiology, 2017, 58, pcw161.	3.1	31
54	Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomaterials Science, 2017, 5, 817-827.	5.4	60

#	Article	IF	CITATIONS
55	Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Biochemistry, 2017, 56, 1680-1695.	2.5	83
56	Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR. Biophysical Journal, 2017, 112, 630-642.	0.5	19
57	Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. Journal of Controlled Release, 2017, 256, 68-78.	9.9	58
58	Conformational Plasticity of the Cell-Penetrating Peptide SAP As Revealed by Solid-State 19F-NMR and Circular Dichroism Spectroscopies. Journal of Physical Chemistry B, 2017, 121, 6479-6491.	2.6	15
59	Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells. Angewandte Chemie, 2017, 129, 7752-7755.	2.0	11
60	Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations. Biophysical Journal, 2017, 112, 2602-2614.	0.5	8
61	Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells. Angewandte Chemie - International Edition, 2017, 56, 7644-7647.	13.8	59
62	Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Scientific Reports, 2017, 7, 44324.	3.3	16
63	Scaling the Amphiphilic Character and Antimicrobial Activity of Gramicidin S by Dihydroxylation or Ketal Formation. Journal of Organic Chemistry, 2017, 82, 12366-12376.	3.2	15
64	Flexibility vs rigidity of amphipathic peptide conjugates when interacting with lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2505-2515.	2.6	7
65	Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Scientific Reports, 2017, 7, 13153.	3.3	84
66	Lactam-Stapled Cell-Penetrating Peptides: Cell Uptake and Membrane Binding Properties. Journal of Medicinal Chemistry, 2017, 60, 8071-8082.	6.4	38
67	Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2308-2318.	2.6	7
68	Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Scientific Reports, 2017, 7, 4974.	3.3	63
69	Diphytanoyl lipids as model systems for studying membrane-active peptides. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1828-1837.	2.6	23
70	High Resolution Solid State NMR, 1H, 19F. , 2017, , 86-94.		0
71	Solid-State NMR for Studying Peptide Structures and Peptide-Lipid Interactions in Membranes. , 2017, , 1-13.		2
72	Solid-State 19F-NMR Analysis of Peptides in Oriented Biomembranes. , 2017, , 1-18.		2

#	Article	IF	CITATIONS
73	Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides. Frontiers in Cell and Developmental Biology, 2016, 4, 65.	3.7	59
74	Therapeutic Potential of Gramicidin S in the Treatment of Root Canal Infections. Pharmaceuticals, 2016, 9, 56.	3.8	27
75	Direct Photocontrol of Peptidomimetics: An Alternative to Oxygenâ€Dependent Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2016, 55, 5493-5496.	13.8	62
76	Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. European Biophysics Journal, 2016, 45, 535-547.	2.2	35
77	Light flips a membrane-embedded helix. Science, 2016, 352, 520-520.	12.6	3
78	Design, Synthesis, and Application of an Optimized Monofluorinated Aliphatic Label for Peptide Studies by Solid‣tate ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 14788-14792.	13.8	43
79	Design, Synthesis, and Application of an Optimized Monofluorinated Aliphatic Label for Peptide Studies by Solidâ€State ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie, 2016, 128, 15008-15012.	2.0	16
80	2H-NMR and MD Simulations Reveal Membrane-Bound Conformation of Magainin 2 and Its Synergy with PGLa. Biophysical Journal, 2016, 111, 2149-2161.	0.5	31
81	Delivering Structural Information on the Polar Face of Membraneâ€Active Peptides: ¹⁹ Fâ€NMR Labels with a Cationic Side Chain. Angewandte Chemie, 2016, 128, 14815-14819.	2.0	19
82	Delivering Structural Information on the Polar Face of Membraneâ€Active Peptides: ¹⁹ Fâ€NMR Labels with a Cationic Side Chain. Angewandte Chemie - International Edition, 2016, 55, 14595-14599.	13.8	27
83	Direct Photocontrol of Peptidomimetics: An Alternative to Oxygenâ€Dependent Photodynamic Cancer Therapy. Angewandte Chemie, 2016, 128, 5583-5586.	2.0	30
84	Does a methionine-to-norleucine substitution in PGLa influence peptide-membrane interactions?. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2019-2027.	2.6	15
85	Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers. Accounts of Chemical Research, 2016, 49, 184-192.	15.6	87
86	Extending the Hydrophobic Mismatch Concept to Amphiphilic Membranolytic Peptides. Journal of Physical Chemistry Letters, 2016, 7, 1116-1120.	4.6	30
87	Alanine scan and 2 H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1328-1338.	2.6	32
88	Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids, 2016, 48, 887-900.	2.7	33
89	An antifungal protein from Ginkgo biloba binds actin and can trigger cell death. Protoplasma, 2016, 253, 1159-1174.	2.1	19
90	Micelleâ€Triggered βâ€Hairpin to αâ€Helix Transition in a 14â€Residue Peptide from a Cholineâ€Binding Repeat Pneumococcal Autolysin LytA. Chemistry - A European Journal, 2015, 21, 8076-8089.	of the	16

#	Article	IF	CITATIONS
91	Hydrophobic mismatch demonstrated for membranolytic peptides and their use as molecular rulers to measure bilayer thickness in native cells. Scientific Reports, 2015, 5, 9388.	3.3	52
92	Frontispiece: Micelle-Triggered β-Hairpin to α-Helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
93	Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity. PLoS ONE, 2015, 10, e0116379.	2.5	57
94	UV-CD12: synchrotron radiation circular dichroism beamline at ANKA. Journal of Synchrotron Radiation, 2015, 22, 844-852.	2.4	23
95	Crown ether helical peptides are preferentially inserted in lipid bilayers as a transmembrane ion channels. Biopolymers, 2015, 104, 427-433.	2.4	7
96	AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides?. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1944-1954.	2.6	44
97	Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDCF Receptor. Biophysical Journal, 2015, 109, 737-749.	0.5	13
98	γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state 19F-NMR peptide studies. Organic and Biomolecular Chemistry, 2015, 13, 3171-3181.	2.8	56
99	Intermolecular Packing in <i>B. mori</i> Silk Fibroin: Multinuclear NMR Study of the Model Peptide (Ala-Gly) ₁₅ Defines a Heterogeneous Antiparallel Antipolar Mode of Assembly in the Silk II Form. Macromolecules, 2015, 48, 28-36.	4.8	43
100	Synergistic Effect of Membrane-Active Peptides Polymyxin B and Gramicidin S on Multidrug-Resistant Strains and Biofilms of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2015, 59, 5288-5296.	3.2	88
101	Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. Journal of Biomolecular NMR, 2015, 61, 287-298.	2.8	36
102	Fermentation and Cost-Effective ¹³ C/ ¹⁵ N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis. Applied and Environmental Microbiology, 2015, 81, 3593-3603.	3.1	5
103	Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. Journal of Peptide Science, 2015, 21, 436-445.	1.4	49
104	Control and role of pH in peptide–lipid interactions in oriented membrane samples. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 833-841.	2.6	20
105	Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 165-176.	2.5	41
106	Structure Analysis and Conformational Transitions of the Cell Penetrating Peptide Transportan 10 in the Membrane-Bound State. PLoS ONE, 2014, 9, e99653.	2.5	46
107	Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix. PLoS Pathogens, 2014, 10, e1003973.	4.7	30
108	¹⁹ F-Labeling of Peptides Revealing Long-Range NMR Distances in Fluid Membranes. Journal of Physical Chemistry Letters, 2014, 5, 4256-4259.	4.6	16

#	Article	IF	CITATIONS
109	Structural characterization of a C-terminally truncated E5 oncoprotein from papillomavirus in lipid bilayers. Biological Chemistry, 2014, 395, 1443-1452.	2.5	9
110	19F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2260-2268.	2.6	33
111	Controlling Biological Activity with Light: Diaryletheneâ€Containing Cyclic Peptidomimetics. Angewandte Chemie - International Edition, 2014, 53, 3392-3395.	13.8	140
112	Innenrücktitelbild: Controlling Biological Activity with Light: Diarylethene-Containing Cyclic Peptidomimetics (Angew. Chem. 13/2014). Angewandte Chemie, 2014, 126, 3589-3589.	2.0	0
113	How reliable are molecular dynamics simulations of membrane active antimicrobial peptides?. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2280-2288.	2.6	83
114	Fluorinated amino acids in amyloid formation: a symphony of size, hydrophobicity and α-helix propensity. Chemical Science, 2014, 5, 819-830.	7.4	67
115	Transient Potential Gradients and Impedance Measures of Tethered BilayerÂLipid Membranes: Pore-Forming Peptide Insertion and the Effect ofÂElectroporation. Biophysical Journal, 2014, 106, 182-189.	0.5	55
116	Structure-Based Engineering of a Minimal Porin Reveals Loop-Independent Channel Closure. Biochemistry, 2014, 53, 4826-4838.	2.5	26
117	Determination of the Absolute Configuration of Perylene Quinoneâ€Derived Mycotoxins by Measurement and Calculation of Electronic Circular Dichroism Spectra and Specific Rotations. Chemistry - A European Journal, 2014, 20, 11463-11470.	3.3	24
118	Labile or Stable: Can Homoleptic and Heteroleptic PyrPHOS–Copper Complexes Be Processed from Solution?. Inorganic Chemistry, 2014, 53, 7837-7847.	4.0	66
119	Length-Dependent Activity of Membrane-Bound Cationic Amphipathic Alpha-Helical Peptides. Biophysical Journal, 2014, 106, 292a.	0.5	1
120	Dynamical structure of the short multifunctional peptide BP100 in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 940-949.	2.6	50
121	Design and Synthesis of a Monofluoro‣ubstituted Aromatic Amino Acid as a Conformationally Restricted ¹⁹ F NMR ÂŁabel for Membraneâ€Bound Peptides. European Journal of Organic Chemistry, 2014, 2014, 3584-3591.	2.4	19
122	Transmembrane helix assembly and the role of salt bridges. Current Opinion in Structural Biology, 2014, 27, 63-68.	5.7	45
123	Oriented Circular Dichroism Analysis of Chiral Surfaceâ€Anchored Metal–Organic Frameworks Grown by Liquidâ€Phase Epitaxy and upon Loading with Chiral Guest Compounds. Chemistry - A European Journal, 2014, 20, 9879-9882.	3.3	57
124	Characterization of the Immersion Properties of the Peripheral Membrane Anchor of the FATC Domain of the Kinase "Target of Rapamycin―by NMR, Oriented CD Spectroscopy, and MD Simulations. Journal of Physical Chemistry B, 2014, 118, 4817-4831.	2.6	14
125	3D Hydrophobic Moment Vectors as a Tool to Characterize the Surface Polarity of Amphiphilic Peptides. Biophysical Journal, 2014, 106, 2385-2394.	0.5	61
126	CHAPTER 16. Dynamic Structure Analysis of Peptides in Membranes by Solid-State NMR. New Developments in NMR, 2014, , 304-319.	0.1	3

#	Article	IF	CITATIONS
127	Resemblance of Electrospun Collagen Nanofibers to Their Native Structure. Langmuir, 2013, 29, 1562-1572.	3.5	91
128	Canonical Azimuthal Rotations and Flanking Residues Constrain theÂOrientation of Transmembrane Helices. Biophysical Journal, 2013, 104, 1508-1516.	0.5	3
129	Nanocrystalline solid solutions AlySn1â^'yO2â^'y/2 (y=0.57, 0.4) as electrode materials for lithium-ion batteries. Journal of Power Sources, 2013, 229, 149-158.	7.8	4
130	Modeling Assembly of the Tata Pore Forming Complex using an Implicit Membrane Model. Biophysical Journal, 2013, 104, 288a.	0.5	0
131	Curvature Engineering: Positive Membrane Curvature Induced by Epsin N-Terminal Peptide Boosts Internalization of Octaarginine. ACS Chemical Biology, 2013, 8, 1894-1899.	3.4	49
132	Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization. Microbial Cell Factories, 2013, 12, 90.	4.0	53
133	Design, Synthesis, and Application of a Trifluoromethylated Phenylalanine Analogue as a Label to Study Peptides by Solid‣tate ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie, 2013, 125, 6632-	6 63 5.	8
134	Stereochemical effects on the aggregation and biological properties of the fibril-forming peptide [KIGAKI]3 in membranes. Physical Chemistry Chemical Physics, 2013, 15, 8962.	2.8	33
135	Lipid Membrane Association of Myelin Proteins and Peptide Segments Studied by Oriented and Synchrotron Radiation Circular Dichroism Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 14983-14993.	2.6	20
136	Folding and Self-Assembly of the TatA Translocation Pore Based on a Charge Zipper Mechanism. Cell, 2013, 152, 316-326.	28.9	59
137	A ¹⁹ Fâ€NMR Label to Substitute Polar Amino Acids in Peptides: A CF ₃ â€&ubstituted Analogue of Serine and Threonine. Angewandte Chemie - International Edition, 2013, 52, 1486-1489.	13.8	48
138	Characterization of Antimicrobial Peptide Insertion in Tethered Bilayer Lipid Membranes by Pulse Amperometry and Linear Sweep Voltammetry Methods. Biophysical Journal, 2013, 104, 600a.	0.5	1
139	Concentration Dependent Transition of Membrane-Bound Beta-Stranded KIGAKI Peptides from Unstructured Monomers into Immobilized Amyloid Fibrils Observed by Solid-State 19F-NMR. Biophysical Journal, 2013, 104, 395a-396a.	0.5	Ο
140	Synergistic Insertion of Antimicrobial Magainin-Family Peptides inÂMembranes Depends on the Lipid Spontaneous Curvature. Biophysical Journal, 2013, 104, L9-L11.	0.5	99
141	Design, Synthesis, and Application of a Trifluoromethylated Phenylalanine Analogue as a Label to Study Peptides by Solidâ€6tate ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 6504-6507.	13.8	25
142	Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. Journal of Controlled Release, 2013, 170, 83-91.	9.9	33
143	Incorporation of labile trans-4,5-difluoromethanoproline into a peptide as a stable label for 19F NMR structure analysis. Journal of Fluorine Chemistry, 2013, 152, 136-143.	1.7	29
144	Multilayered core–shell structure of polyol-stabilized calcium fluoride nanoparticles characterized by NMR. Journal of Colloid and Interface Science, 2013, 390, 250-257.	9.4	20

#	Article	IF	CITATIONS
145	Antimicrobial Peptides can Enhance the Risk of Persistent Infections. Frontiers in Immunology, 2012, 3, 222.	4.8	8
146	A new type of intracellular retention signal identified in a pestivirus structural glycoprotein. FASEB Journal, 2012, 26, 3292-3305.	0.5	25
147	Peptide-Lipid Interactions of the Stress-Response Peptide TisB That Induces Bacterial Persistence. Biophysical Journal, 2012, 103, 1460-1469.	0.5	50
148	Structural Investigations of the Transmembrane Segment of the PDGF Receptor Beta ant the Oncoprotein E5 by Circular Dichroism and NMR. Biophysical Journal, 2012, 102, 263a-264a.	0.5	0
149	Self-Assembly of the Membrane-Bound β-Stranded Peptide (KIGAKI)3 into Immobilized Amyloid Fibrils Observed by Solid-State 19F-NMR. Biophysical Journal, 2012, 102, 488a.	0.5	0
150	Structure-Activity Analysis of the Dermcidin-derived Peptide DCD-1L, an Anionic Antimicrobial Peptide Present in Human Sweat. Journal of Biological Chemistry, 2012, 287, 8434-8443.	3.4	85
151	Rapid calculation of protein chemical shifts using bond polarization theory and its application to protein structure refinement. Physical Chemistry Chemical Physics, 2012, 14, 12263.	2.8	14
152	Synthesis of nanocrystalline solid solutions AlySn1â^'yO2â^'y/2 (y = 0.57, 0.4) investigated by XRD, 27Al/119Sn MAS NMR, and M¶ssbauer spectroscopy. RSC Advances, 2012, 2, 10700.	3.6	6
153	Self-Assembly of Flexible β-Strands into Immobile Amyloid-Like β-Sheets in Membranes As Revealed by Solid-State 19F NMR. Journal of the American Chemical Society, 2012, 134, 6512-6515.	13.7	76
154	Hydrophobic Matching Controls the Tilt and Stability of the Dimeric Platelet-derived Growth Factor Receptor (PDGFR) β Transmembrane Segment. Journal of Biological Chemistry, 2012, 287, 26178-26186.	3.4	60
155	Anisotropic Organization and Microscopic Manipulation of Self-Assembling Synthetic Porphyrin Microrods That Mimic Chlorosomes: Bacterial Light-Harvesting Systems. Journal of the American Chemical Society, 2012, 134, 944-954.	13.7	55
156	Incorporation of cis- and trans-4,5-Difluoromethanoprolines into Polypeptides. Organic Letters, 2012, 14, 5254-5257.	4.6	44
157	Magnetically oriented dodecylphosphocholine bicelles for solid-state NMR structure analysis. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1142-1147.	2.6	19
158	Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1242-1249.	2.6	88
159	Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1764-1776.	2.6	96
160	Alignment of Druglike Compounds in Lipid Bilayers Analyzed by Solid-State19F-NMR and Molecular Dynamics, Based on Dipolar Couplings of Adjacent CF3Groups. Journal of Physical Chemistry B, 2012, 116, 4769-4782.	2.6	6
161	A Peptidic Unconjugated GRP78/BiP Ligand Modulates the Unfolded Protein Response and Induces Prostate Cancer Cell Death. PLoS ONE, 2012, 7, e45690.	2.5	37
162	Trifluoromethyl-Substituted α-Amino Acids as Solid-State 19F NMR Labels for Structural Studies of Membrane-Bound Peptides. Modecular Medicine and Medicinal, 2012, , 91-138.	0.4	23

#	Article	IF	CITATIONS
163	Structure analysis of the membrane-bound PhoD signal peptide of the Tat translocase shows an N-terminal amphiphilic helix. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3025-3031.	2.6	11
164	Synergistic Insertion of Antimicrobial Peptides into Membranes. Biophysical Journal, 2012, 102, 88a.	0.5	0
165	A Novel Dendrimeric Peptide with Antimicrobial Properties: Structure-Function Analysis of SB056. Biophysical Journal, 2012, 102, 1039-1048.	0.5	41
166	Membrane-Active Peptides and the Clustering of Anionic Lipids. Biophysical Journal, 2012, 103, 265-274.	0.5	115
167	Reorientation and Dimerization of the Membrane-Bound Antimicrobial Peptide PGLa from Microsecond All-Atom MD Simulations. Biophysical Journal, 2012, 103, 472-482.	0.5	51
168	Short Stories - on Antimicrobial Peptides that are Too Short to Span the Membrane. Biophysical Journal, 2012, 102, 616a.	0.5	0
169	Structure Analysis and MD Simulation of the Biofilm Promoting Peptide TisB from E. coli. Biophysical Journal, 2012, 102, 492a-493a.	0.5	0
170	Nonequilibrium structure of Zn2SnO4 spinel nanoparticles. Journal of Materials Chemistry, 2012, 22, 3117.	6.7	96
171	Comparative analysis of the orientation of transmembrane peptides using solid-state 2H- and 15N-NMR: mobility matters. European Biophysics Journal, 2012, 41, 475-482.	2.2	22
172	Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. European Biophysics Journal, 2012, 41, 177-187.	2.2	60
173	Local Structural Disorder and Relaxation in SnO ₂ Nanostructures Studied by ¹¹⁹ Sn MAS NMR and ¹¹⁹ Sn Mössbauer Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 6433-6437.	3.1	40
174	Insertion of Amphipathic Helices into Membranes Depends on the Spontaneous Curvature of the Lipid System. Biophysical Journal, 2011, 100, 351a.	0.5	0
175	Folding and Self-Assembly of the Pore-Forming Unit Tat-A of the Bacterial Twin-Arginine Translocase. Biophysical Journal, 2011, 100, 345a.	0.5	0
176	Bilayer-Mediated Clustering and Functional Interaction of MscL Channels. Biophysical Journal, 2011, 100, 1252-1260.	0.5	87
177	Electrochemical insertion of lithium in mechanochemically synthesized Zn2SnO4. Physical Chemistry Chemical Physics, 2011, 13, 19624.	2.8	30
178	Click chemistry produces hyper-cross-linked polymers with tetrahedral cores. New Journal of Chemistry, 2011, 35, 1577.	2.8	53
179	Preferential Uptake of L- versus D-Amino Acid Cell-Penetrating Peptides in a Cell Type-Dependent Manner. Chemistry and Biology, 2011, 18, 1000-1010.	6.0	126
180	Solid-State 19F-NMR of Peptides in Native Membranes. Topics in Current Chemistry, 2011, 306, 89-118.	4.0	69

#	Article	IF	CITATIONS
181	A kinked antimicrobial peptide from Bombina maxima. I. Three-dimensional structure determined by NMR in membrane-mimicking environments. European Biophysics Journal, 2011, 40, 447-462.	2.2	22
182	A kinked antimicrobial peptide from Bombina maxima. II. Behavior in phospholipid bilayers. European Biophysics Journal, 2011, 40, 463-470.	2.2	22
183	Special issue on membrane-active peptides. European Biophysics Journal, 2011, 40, 347-348.	2.2	3
184	Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. European Biophysics Journal, 2011, 40, 529-543.	2.2	38
185	Using the Peptide Bp100 as a Cellâ€Penetrating Tool for the Chemical Engineering of Actin Filaments within Living Plant Cells. ChemBioChem, 2011, 12, 132-137.	2.6	75
186	Variable angle NMR spectroscopy and its application to the measurement of residual chemical shift anisotropy. Journal of Magnetic Resonance, 2011, 209, 19-30.	2.1	56
187	Fluorescence of Phytochrome Adducts with Synthetic Locked Chromophores. Journal of Biological Chemistry, 2011, 286, 1103-1113.	3.4	19
188	Compatibility of the conformationally rigid CF3-Bpg side chain with the hydrophobic coiled-coil interface. Amino Acids, 2010, 39, 1589-1593.	2.7	15
189	The conserved Cys76 plays a crucial role for the conformation of reduced glutathione peroxidaseâ€ŧype tryparedoxin peroxidase. FEBS Letters, 2010, 584, 1027-1032.	2.8	5
190	An optimized protocol for the multigram synthesis of 3-(trifluoromethyl)bicyclo[1.1.1]pent-1-ylglycine (CF3-Bpg). Journal of Fluorine Chemistry, 2010, 131, 217-220.	1.7	44
191	Role of Peptide Folding and Aggregation in Triggering Membrane Perturbation. Biophysical Journal, 2010, 98, 609a.	0.5	0
192	Clustering and Functional Interaction of MscL Channels. Biophysical Journal, 2010, 98, 324a.	0.5	0
193	Dynamic Transitions of Membrane-Active Peptides. Methods in Molecular Biology, 2010, 618, 183-207.	0.9	44
194	Influence of Lipid Composition on the Orientational State of the Antimicrobial Peptide MSI-103 in Membranes. a Solid-State NMR Study. Biophysical Journal, 2010, 98, 83a.	0.5	0
195	Structural Role of the Conserved Cysteines in the Dimerization of the Viral Transmembrane Oncoprotein E5. Biophysical Journal, 2010, 99, 1764-1772.	0.5	21
196	¹⁹ F NMR Analysis of the Antimicrobial Peptide PGLa Bound to Native Cell Membranes from Bacterial Protoplasts and Human Erythrocytes. Journal of the American Chemical Society, 2010, 132, 8822-8824.	13.7	57
197	Membrane Alignment of the Pore-Forming Component TatA _d of the Twin-Arginine Translocase from <i>Bacillus subtilis</i> Resolved by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 15945-15956.	13.7	74
198	Solid state NMR analysis of peptides in membranes: Influence of dynamics and labeling scheme. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 252-257.	2.6	20

#	Article	IF	CITATIONS
199	Short Cationic Antimicrobial Peptides Interact with ATP. Antimicrobial Agents and Chemotherapy, 2010, 54, 4480-4483.	3.2	70
200	Damage of the Bacterial Cell Envelope by Antimicrobial Peptides Gramicidin S and PGLa as Revealed by Transmission and Scanning Electron Microscopy. Antimicrobial Agents and Chemotherapy, 2010, 54, 3132-3142.	3.2	417
201	Membrane Fusion is Induced by Antimicrobial and Cell Penetrating Peptides, to an Extent that Correlates with their Conformational Change. Biophysical Journal, 2010, 98, 218a.	0.5	0
202	A Cell-penetrating Peptide Derived from Human Lactoferrin with Conformation-dependent Uptake Efficiency. Journal of Biological Chemistry, 2009, 284, 36099-36108.	3.4	105
203	Synergistic Interaction between Silver Nanoparticles and Membrane-Permeabilizing Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2009, 53, 3538-3540.	3.2	189
204	Structure and dynamics of the human muscle LIM protein. FEBS Letters, 2009, 583, 1017-1022.	2.8	12
205	Screening and Characterization of Surface-Tethered Cationic Peptides for Antimicrobial Activity. Chemistry and Biology, 2009, 16, 58-69.	6.0	197
206	Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1667-1679.	2.6	79
207	Chemical Labeling Strategy with (<i>R</i>)- and (<i>S</i>)-Trifluoromethylalanine for Solid State ¹⁹ F NMR Analysis of Peptaibols in Membranes. Journal of the American Chemical Society, 2009, 131, 15596-15597.	13.7	65
208	Structure analysis of the membrane protein TatCd from the Tat system of B. subtilis by circular dichroism. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2238-2244.	2.6	23
209	Influence of Whole-Body Dynamics on 15N PISEMA NMR Spectra of Membrane Proteins: A Theoretical Analysis. Biophysical Journal, 2009, 96, 3233-3241.	0.5	40
210	Orientation and Dynamics of Peptides in Membranes Calculated from 2H-NMR Data. Biophysical Journal, 2009, 96, 3223-3232.	0.5	99
211	Synthesis of a Conformationally Rigid Analogue of 2-Aminoadipic Acid ÂContaining an 8-Azabicyclo[3.2.1]octane Skeleton. Synthesis, 2009, 2009, 3327-3331.	2.3	1
212	Calculation of fluorine chemical shift tensors for the interpretation of oriented 19F-NMR spectra of gramicidin A in membranes. Physical Chemistry Chemical Physics, 2009, 11, 7048.	2.8	30
213	Solid State 19F-NMR Analysis of Oriented Biomembranes. , 2008, , 261-267.		0
214	Solid state 19F NMR parameters of fluorine-labeled amino acids. Part II: Aliphatic substituents. Journal of Magnetic Resonance, 2008, 191, 16-23.	2.1	68
215	Spectral assignments and anisotropy data of cellulose <i>I</i> _α : ¹³ Câ€NMR chemical shift data of cellulose <i>I</i> _α determined by INADEQUATE and RAI techniques applied to uniformly ¹³ C″abeled bacterial celluloses of different <i>Gluconacetobacter xylinus</i> strains. Magnetic Resonance in Chemistry. 2008. 46. 1030-1036.	1.9	16
216	Synthesis of Trifluoromethyl‣ubstituted Proline Analogues as ¹⁹ Fâ€NMR Labels for Peptides in the Polyprolineâ€Il Conformation. Angewandte Chemie - International Edition, 2008, 47, 5765-5767.	13.8	115

#	Article	IF	CITATIONS
217	Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: Aromatic substituents. Journal of Magnetic Resonance, 2008, 191, 7-15.	2.1	57
218	Solid State NMR Structure Analysis of the Antimicrobial Peptide GramicidinÂS in Lipid Membranes: Concentration-Dependent Re-alignment and Self-Assembly as aÂβ-Barrel. Topics in Current Chemistry, 2008, 273, 139-154.	4.0	46
219	Conformation and Membrane Orientation of Amphiphilic Helical Peptides by Oriented Circular Dichroism. Biophysical Journal, 2008, 95, 3872-3881.	0.5	109
220	Membrane Thickening by the Antimicrobial Peptide PGLa. Biophysical Journal, 2008, 95, 5779-5788.	0.5	62
221	Peptoidic Amino- and Guanidinium-Carrier Systems: Targeted Drug Delivery into the Cell Cytosol or the Nucleus. Journal of Medicinal Chemistry, 2008, 51, 376-379.	6.4	113
222	Temperature-Dependent Transmembrane Insertion of the Amphiphilic Peptide PGLa in Lipid Bilayers Observed by Solid State ¹⁹ F NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 16512-16514.	13.7	87
223	Solid-State ¹⁹ F NMR Spectroscopy Reveals That Trp ₄₁ Participates in the Gating Mechanism of the M2 Proton Channel of Influenza A Virus. Journal of the American Chemical Society, 2008, 130, 918-924.	13.7	47
224	Solid-State NMR Analysis Comparing the Designer-Made Antibiotic MSI-103 with Its Parent Peptide PGLa in Lipid Bilayers. Biochemistry, 2008, 47, 2601-2616.	2.5	77
225	Using a Sterically Restrictive Amino Acid as a 19F NMR label To Monitor and To Control Peptide Aggregation in Membranes. Journal of the American Chemical Society, 2008, 130, 16515-16517.	13.7	70
226	A Convenient Route to Trifluoromethyl-Substituted Cyclopropane Derivatives. Synthesis, 2008, 2008, 1757-1760.	2.3	19
227	The Ability of <i>Aneurinibacillus migulanus</i> (<i>Bacillus brevis</i>) To Produce the Antibiotic Gramicidin S Is Correlated with Phenotype Variation. Applied and Environmental Microbiology, 2007, 73, 6620-6628.	3.1	54
228	Using Fluorinated Amino Acids for Structure Analysis of Membrane-Active Peptides by Solid-State 19F-NMR. ACS Symposium Series, 2007, , 431-446.	0.5	11
229	Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides. Pure and Applied Chemistry, 2007, 79, 717-728.	1.9	86
230	Structure analysis of the protein translocating channel TatA in membranes using a multi-construct approach. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2627-2634.	2.6	41
231	Structural characterization of the pore forming protein TatAd of the twin-arginine translocase in membranes by solid-state 15N-NMR. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 3071-3079.	2.6	39
232	Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles. Journal of Colloid and Interface Science, 2007, 316, 413-419.	9.4	23
233	Evaluating the amino acid CF ₃ â€bicyclopentylglycine as a new label for solidâ€state ¹⁹ Fâ€NMR structure analysis of membraneâ€bound peptides. Journal of Peptide Science, 2007, 13, 614-623.	1.4	53
234	A critical evaluation of the conformational requirements of fusogenic peptides in membranes. European Biophysics Journal, 2007, 36, 405-413.	2.2	39

#	Article	IF	CITATIONS
235	All-atom molecular dynamics simulations using orientational constraints from anisotropic NMR samples. Journal of Biomolecular NMR, 2007, 38, 23-39.	2.8	27
236	Solid-State NMR Analysis of the PGLa Peptide Orientation in DMPC Bilayers: Structural Fidelity of 2H-Labels versus High Sensitivity of 19F-NMR. Biophysical Journal, 2006, 90, 1676-1686.	0.5	110
237	13C Chemical Shift Constrained Crystal Structure Refinement of Cellulose Iαand Its Verification by NMR Anisotropy Experiments. Macromolecules, 2006, 39, 6125-6132.	4.8	74
238	NMR Chemical Shift Powder Pattern Recoupling at High Spinning Speed and Theoretical Tensor Evaluation Applied to Silk Fibroin. Journal of the American Chemical Society, 2006, 128, 2236-2243.	13.7	22
239	Optimized Protocol for Synthesis of Cyclic Gramicidin S:Â Starting Amino Acid Is Key to High Yield. Journal of Organic Chemistry, 2006, 71, 55-61.	3.2	65
240	Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1330-1342.	2.6	87
241	Solid state NMR analysis of the dipolar couplings within and between distant CF3-groups in a membrane-bound peptide. Journal of Magnetic Resonance, 2006, 183, 77-86.	2.1	23
242	Conformationally Rigid Trifluoromethyl-Substituted α-Amino Acid Designed for Peptide Structure Analysis by Solid-State19F NMR Spectroscopy. Angewandte Chemie - International Edition, 2006, 45, 5659-5661.	13.8	103
243	The Cell-Penetrating Peptide TAT(48-60) Induces a Non-Lamellar Phase in DMPC Membranes. ChemPhysChem, 2006, 7, 2134-2142.	2.1	69
244	Synergistic Transmembrane Alignment of the Antimicrobial Heterodimer PGLa/Magainin. Journal of Biological Chemistry, 2006, 281, 32089-32094.	3.4	97
245	3D Structure Elucidation Using NMR Chemical Shifts. ChemInform, 2005, 36, no.	0.0	0
246	Solid state 19F NMR methods for studying biomembranes. Progress in Nuclear Magnetic Resonance Spectroscopy, 2005, 46, 1-21.	7.5	146
247	2H-NMR Study and Molecular Dynamics Simulation of the Location, Alignment, and Mobility of Pyrene in POPC Bilayers. Biophysical Journal, 2005, 88, 1818-1827.	0.5	117
248	Concentration-Dependent Realignment of the Antimicrobial Peptide PGLa in Lipid Membranes Observed by Solid-State 19F-NMR. Biophysical Journal, 2005, 88, 3392-3397.	0.5	151
249	Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. Journal of Magnetic Resonance, 2004, 168, 153-163.	2.1	110
250	NMR methods for studying membrane-active antimicrobial peptides. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2004, 23A, 89-120.	0.5	128
251	Novel Lipid Nanotubes in Dispersions of DMPC. ChemPhysChem, 2004, 5, 1246-1249.	2.1	26
252	Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Magnetic Resonance in Chemistry, 2004, 42, 258-266.	1.9	70

#	Article	IF	CITATIONS
253	â€~Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19 F NMR. Magnetic Resonance in Chemistry, 2004, 42, 195-203.	1.9	65
254	Guest Editors' Foreword: Solid-state NMR on biological systems. Magnetic Resonance in Chemistry, 2004, 42, 86-86.	1.9	1
255	Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR. Chemistry and Physics of Lipids, 2004, 132, 65-77.	3.2	14
256	Structure of (KIAGKIA)3 Aggregates in Phospholipid Bilayers by Solid-State NMR. Biophysical Journal, 2004, 87, 675-687.	0.5	56
257	3D Structure Elucidation Using NMR Chemical Shifts. Annual Reports on NMR Spectroscopy, 2004, , 53-104.	1.5	17
258	4-Fluorophenylglycine as a Label for 19F NMR Structure Analysis of Membrane-Associated Peptides. ChemBioChem, 2003, 4, 1151-1163.	2.6	111
259	Susceptibility corrections in solid-state NMR experiments with oriented membrane samples. Part I: applications. Journal of Magnetic Resonance, 2003, 164, 104-114.	2.1	50
260	Susceptibility corrections in solid state NMR experiments with oriented membrane samples. Part II: Theory. Journal of Magnetic Resonance, 2003, 164, 115-127.	2.1	31
261	Heterogeneous Structure of Silk Fibers fromBombyxmoriResolved by13C Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2002, 124, 8794-8795.	13.7	215
262	Solid-State 19F-NMR Analysis of 19F-Labeled Tryptophan in Gramicidin A in Oriented Membranes. Biophysical Journal, 2002, 83, 3336-3350.	0.5	56
263	Biophysical Aspects of Using Liposomes as Delivery Vehicles. Bioscience Reports, 2002, 22, 129-150.	2.4	393
264	Nucleophilic displacement reactions on tosyl cellulose by chiral amines. Polymer Bulletin, 2001, 46, 7-13.	3.3	37
265	Interaction of Zn2+ with phospholipid membranes. Biophysical Chemistry, 2001, 90, 57-74.	2.8	87
266	Interaction of mastoparan with membranes studied by 1 H-NMR spectroscopy in detergent micelles and by solid-state 2 H-NMR and 15 N-NMR spectroscopy in oriented lipid bilayers. FEBS Journal, 2001, 268, 302-309.	0.2	56
267	Membrane-bound structure and alignment of the antimicrobial beta-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR. Journal of Biomolecular NMR, 2001, 21, 191-208.	2.8	116
268	Solid state 19F-NMR of biomembranes. Focus on Structural Biology, 2001, , 83-91.	0.1	4
269	Interaction of mastoparan with membranes studied by 1H-NMR spectroscopy in detergent micelles and by solid-state 2H-NMR and 15N-NMR spectroscopy in oriented lipid bilayers. FEBS Journal, 2001, 268, 302-309.	0.2	0
270	Orientation-Dependent 19F Dipolar Couplings within a Trifluoromethyl Group Are Revealed by Static Multipulse NMR in the Solid State. Journal of Magnetic Resonance, 2000, 146, 81-88.	2.1	39

#	Article	IF	CITATIONS
271	Hydration of DMPC and DPPC at 4°C produces a novel subgel phase with convex–concave bilayer curvatures. Chemistry and Physics of Lipids, 2000, 105, 149-166.	3.2	51
272	The effect of Zn2+ on the secondary structure of a histidine-rich fusogenic peptide and its interaction with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1468, 345-358.	2.6	22
273	The amphiphilic drug flufenamic acid can induce a hexagonal phase in DMPC: a solid state 31P- and 19F-NMR study. Physical Chemistry Chemical Physics, 2000, 2, 4574-4579.	2.8	16
274	High Resolution Solid State NMR, 1H, 19F. , 1999, , 813-825.		1
275	Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles. Chemistry and Physics of Lipids, 1999, 99, 111-123.	3.2	25
276	Structural Parameters from19F Homonuclear Dipolar Couplings, Obtained by Multipulse Solid-State NMR on Static and Oriented Systems. Journal of Magnetic Resonance, 1999, 138, 98-106.	2.1	40
277	High Resolution Solid State NMR, 1H, 19F*. , 1999, , 905-916.		Ο
278	Ultrastructural Characterization of Peptide-Induced Membrane Fusion and Peptide Self-Assembly in the Lipid Bilayer. Biophysical Journal, 1999, 77, 829-841.	0.5	56
279	Structure Analysis of a Fusogenic Peptide Sequence from the Sea Urchin Fertilization Protein Bindinâ€. Biochemistry, 1999, 38, 2560-2569.	2.5	58
280	Hydrogen-Bonding Structure of Serine Side Chains inBombyx moriandSamia cynthia riciniSilk Fibroin Determined by Solid-State2H NMR. Macromolecules, 1999, 32, 7166-7171.	4.8	46
281	Dynamics of the Tyrosine Side Chain inBombyxmoriandSamiacynthiariciniSilk Fibroin Studied by Solid State2H NMR. Macromolecules, 1999, 32, 8491-8495.	4.8	32
282	Minimal Radius of Curvature of Lipid Bilayers in the Gel Phase State Corresponds to the Dimension of Biomembrane Structures "Caveolae― Journal of Structural Biology, 1998, 124, 77-87.	2.8	17
283	Membrane Fusion Is Induced by a Distinct Peptide Sequence of the Sea Urchin Fertilization Protein Bindin. Journal of Biological Chemistry, 1998, 273, 16748-16755.	3.4	77
284	2H-Labeling of Silk Fibroin Fibers and Their Structural Characterization by Solid-State2H NMR. Macromolecules, 1997, 30, 2429-2435.	4.8	44
285	Title is missing!. Journal of Biomolecular NMR, 1997, 10, 95-106.	2.8	50
286	² H NMR studies of oriented bacteriorhodopsin membranes to determine single bond orientations. Macromolecular Symposia, 1996, 101, 81-89.	0.7	1
287	Protein binding to supported lecithin bilayers controlled by the lipid phase state: a new concept for highly selective protein purification. European Biophysics Journal, 1996, 25, 151-153.	2.2	13
288	Bacteriorhodopsin: the effect of bilayer thickness on 2D-array formation, and the structural re-alignment of retinal through the photocycle. Biophysical Chemistry, 1995, 56, 41-46.	2.8	6

#	Article	IF	CITATIONS
289	Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin. Nature Structural and Molecular Biology, 1995, 2, 190-192.	8.2	64
290	Membrane protein structure: the contribution and potential of novel solid state NMR approaches (Review). Molecular Membrane Biology, 1995, 12, 233-246.	2.0	47
291	Lipid headgroup hydration studied by 2H-NMR: A link between spectroscopy and thermodynamics. Biophysical Chemistry, 1994, 49, 39-50.	2.8	28
292	Hydration of DOPC bilayers by differential scanning calorimetry. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 225-230.	2.6	120
293	Distorted Structure of the Retinal Chromophore in Bacteriorhodopsin Resolved by 2H-NMR. Biochemistry, 1994, 33, 5370-5375.	2.5	81
294	2H NMR lineshapes of immobilized uniaxially oriented membrane proteins. Solid State Nuclear Magnetic Resonance, 1993, 2, 21-36.	2.3	56
295	Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. Biochemistry, 1992, 31, 10390-10399.	2.5	66
296	The dependence of phospholipid head-group mobility on hydration as studied by deuterium-NMR spin-lattice relaxation time measurements. Chemistry and Physics of Lipids, 1990, 55, 61-66.	3.2	28