Gonzalo M Vazquez-Prokopec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2734876/publications.pdf Version: 2024-02-01

	87888	114465
4,862	38	63
citations	h-index	g-index
122	122	4877
docs citations	times ranked	citing authors
	citations 122	4,86238citationsh-index122122

#	Article	IF	CITATIONS
1	House-to-house human movement drives dengue virus transmission. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 994-999.	7.1	416
2	The Role of Human Movement in the Transmission of Vector-Borne Pathogens. PLoS Neglected Tropical Diseases, 2009, 3, e481.	3.0	414
3	A New, Cost-Effective, Battery-Powered Aspirator for Adult Mosquito Collections. Journal of Medical Entomology, 2009, 46, 1256-1259.	1.8	209
4	Using GPS Technology to Quantify Human Mobility, Dynamic Contacts and Infectious Disease Dynamics in a Resource-Poor Urban Environment. PLoS ONE, 2013, 8, e58802.	2.5	177
5	Quantifying the Spatial Dimension of Dengue Virus Epidemic Spread within a Tropical Urban Environment. PLoS Neglected Tropical Diseases, 2010, 4, e920.	3.0	159
6	The macroecology of infectious diseases: a new perspective on globalâ€scale drivers of pathogen distributions and impacts. Ecology Letters, 2016, 19, 1159-1171.	6.4	126
7	Contributions from the silent majority dominate dengue virus transmission. PLoS Pathogens, 2018, 14, e1006965.	4.7	118
8	Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. International Journal of Health Geographics, 2009, 8, 68.	2.5	114
9	Time-varying, serotype-specific force of infection of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2694-702.	7.1	105
10	Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites and Vectors, 2016, 9, 67.	2.5	99
11	Active Dispersal of Natural Populations of <i>Triatoma infestans</i> (Hemiptera: Reduviidae) in Rural Northwestern Argentina. Journal of Medical Entomology, 2004, 41, 614-621.	1.8	94
12	Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. Science Advances, 2017, 3, e1602024.	10.3	88
13	Reinfestation Sources for Chagas Disease Vector, <i>Triatoma infestans </i> , Argentina. Emerging Infectious Diseases, 2006, 12, 1096-1102.	4.3	87
14	Hidden Sylvatic Foci of the Main Vector of Chagas Disease Triatoma infestans: Threats to the Vector Elimination Campaign?. PLoS Neglected Tropical Diseases, 2011, 5, e1365.	3.0	86
15	Unforeseen Costs of Cutting Mosquito Surveillance Budgets. PLoS Neglected Tropical Diseases, 2010, 4, e858.	3.0	72
16	Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasites and Vectors, 2012, 5, 225.	2.5	71
17	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	3.0	70
18	Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e3038.	3.0	68

#	Article	IF	CITATIONS
19	Combined Sewage Overflow Enhances Oviposition of <i>Culex quinquefasciatus</i> (Diptera:) Tj ETQq1 1 0.784	314 rgBT	Overlock 10
20	Indoor Resting Behavior of <i>Aedes aegypti</i> (Diptera: Culicidae) in Acapulco, Mexico. Journal of Medical Entomology, 2017, 54, tjw203.	1.8	61
21	Cost-Effectiveness of Chagas Disease Vector Control Strategies in Northwestern Argentina. PLoS Neglected Tropical Diseases, 2009, 3, e363.	3.0	61
22	Spatial Analysis Spotlighting Early Childhood Leprosy Transmission in a Hyperendemic Municipality of the Brazilian Amazon Region. PLoS Neglected Tropical Diseases, 2014, 8, e2665.	3.0	60
23	Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Neglected Tropical Diseases, 2018, 12, e0006298.	3.0	60
24	Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e2888.	3.0	59
25	Upscale or downscale: applications of fine scale remotely sensed data to Chagas disease in Argentina and schistosomiasis in Kenya. Geospatial Health, 2006, 1, 49.	0.8	56
26	Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico. Emerging Infectious Diseases, 2015, 21, 308-311.	4.3	55
27	Spatio-temporal analysis of reinfestation by Triatoma infestans (Hemiptera: Reduviidae) following insecticide spraying in a rural community in northwestern Argentina. American Journal of Tropical Medicine and Hygiene, 2004, 71, 803-10.	1.4	55
28	Domestic Animal Hosts Strongly Influence Human-Feeding Rates of the Chagas Disease Vector Triatoma infestans in Argentina. PLoS Neglected Tropical Diseases, 2014, 8, e2894.	3.0	54
29	Theory and data for simulating fine-scale human movement in an urban environment. Journal of the Royal Society Interface, 2014, 11, 20140642.	3.4	53
30	Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2014, 8, e3033.	3.0	52
31	Comparative Trial of Effectiveness of Pyrethroid Insecticides Against Peridomestic Populations of <1>Triatoma infestans 1 in Northwestern Argentina. Journal of Medical Entomology, 2006, 43, 902-909.	1.8	50
32	Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Scientific Reports, 2018, 8, 12535.	3.3	50
33	Assessing and Maximizing the Acceptability of Global Positioning System Device Use for Studying the Role of Human Movement in Dengue Virus Transmission in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2010, 82, 723-730.	1.4	48
34	Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Neglected Tropical Diseases, 2017, 11, e0005656.	3.0	47
35	Forecasting the effectiveness of indoor residual spraying for reducing dengue burden. PLoS Neglected Tropical Diseases, 2018, 12, e0006570.	3.0	44
36	The Risk of West Nile Virus Infection Is Associated with Combined Sewer Overflow Streams in Urban Atlanta, Georgia, USA. Environmental Health Perspectives, 2010, 118, 1382-1388.	6.0	43

#	Article	IF	CITATIONS
37	Spatial epidemiology and serologic cohorts increase the early detection of leprosy. BMC Infectious Diseases, 2015, 15, 527.	2.9	42
38	Spatiotemporal Patterns of Reinfestation by <i>Triatoma guasayana</i> (Hemiptera: Reduviidae) in a Rural Community of Northwestern Argentina. Journal of Medical Entomology, 2005, 42, 571-581.	1.8	41
39	Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 106-115.	1.8	41
40	Coupled Heterogeneities and Their Impact on Parasite Transmission and Control. Trends in Parasitology, 2016, 32, 356-367.	3.3	41
41	A PROSPECTIVE STUDY OF THE EFFECTS OF SUSTAINED VECTOR SURVEILLANCE FOLLOWING COMMUNITY-WIDE INSECTICIDE APPLICATION ON TRYPANOSOMA CRUZI INFECTION OF DOGS AND CATS IN RURAL NORTHWESTERN ARGENTINA. American Journal of Tropical Medicine and Hygiene, 2006, 75, 753-761.	1.4	41
42	Improved Chemical Control of Chagas Disease Vectors in the Dry Chaco Region. Journal of Medical Entomology, 2013, 50, 394-403.	1.8	39
43	Key Source Habitats and Potential Dispersal of Triatoma infestans Populations in Northwestern Argentina: Implications for Vector Control. PLoS Neglected Tropical Diseases, 2014, 8, e3238.	3.0	38
44	Restoration of pyrethroid susceptibility in a highly resistant <i>Aedes aegypti</i> population. Biology Letters, 2018, 14, 20180022.	2.3	35
45	Comparative Trial of Effectiveness of Pyrethroid Insecticides Against Peridomestic Populations of <i>Triatoma infestans</i> in Northwestern Argentina. Journal of Medical Entomology, 2006, 43, 902-909.	1.8	34
46	Global Positioning System Data-Loggers: A Tool to Quantify Fine-Scale Movement of Domestic Animals to Evaluate Potential for Zoonotic Transmission to an Endangered Wildlife Population. PLoS ONE, 2014, 9, e110984.	2.5	34
47	Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts: a spatial analysis. Lancet Planetary Health, The, 2021, 5, e277-e285.	11.4	32
48	River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2015, 9, e0003648.	3.0	31
49	Calling in sick: impacts of fever on intra-urban human mobility. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160390.	2.6	31
50	Efficacy of novel indoor residual spraying methods targeting pyrethroid-resistant Aedes aegypti within experimental houses. PLoS Neglected Tropical Diseases, 2019, 13, e0007203.	3.0	31
51	An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. PLoS Computational Biology, 2019, 15, e1006710.	3.2	31
52	Designing effective control of dengue with combined interventions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3319-3325.	7.1	29
53	House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Neglected Tropical Diseases, 2018, 12, e0006283.	3.0	29
54	Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Neglected Tropical Diseases, 2022, 16, e0010324.	3.0	29

#	Article	IF	CITATIONS
55	Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Computational Biology, 2020, 16, e1007743.	3.2	27
56	Evidence of vertical transmission and co-circulation of chikungunya and dengue viruses in field populations ofAedes aegypti(L.) from Guerrero, Mexico: TableA1 Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 110, trv106.	1.8	26
57	Spatial Heterogeneity and Risk Maps of Community Infestation by Triatoma infestans in Rural Northwestern Argentina. PLoS Neglected Tropical Diseases, 2012, 6, e1788.	3.0	25
58	Long term impacts of combined sewer overflow remediation on water quality and population dynamics of Culex quinquefasciatus, the main urban West Nile virus vector in Atlanta, GA. Environmental Research, 2014, 129, 20-26.	7.5	25
59	Lack of evidence for Zika virus transmission by Culex mosquitoes. Emerging Microbes and Infections, 2017, 6, 1-2.	6.5	24
60	Estimating absolute indoor density of Aedes aegypti using removal sampling. Parasites and Vectors, 2019, 12, 250.	2.5	23
61	Community-based surveillance and control of chagas disease vectors in remote rural areas of the Argentine Chaco: A five-year follow-up. Acta Tropica, 2019, 191, 108-115.	2.0	23
62	Housing improvement: a novel paradigm for urban vector-borne disease control?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 567-569.	1.8	22
63	Epidemiology of dengue and other arboviruses in a cohort of school children and their families in Yucatan, Mexico: Baseline and first year follow-up. PLoS Neglected Tropical Diseases, 2018, 12, e0006847.	3.0	22
64	Fine-scale spatial and temporal dynamics of kdr haplotypes in Aedes aegypti from Mexico. Parasites and Vectors, 2019, 12, 20.	2.5	22
65	Estimating the impact of city-wide Aedes aegypti population control: An observational study in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007255.	3.0	22
66	Characterizing environmental suitability of Aedes albopictus (Diptera: Culicidae) in Mexico based on regional and global niche models. Journal of Medical Entomology, 2018, 55, 69-77.	1.8	21
67	The entomological impact of passive metofluthrin emanators against indoor Aedes aegypti: A randomized field trial. PLoS Neglected Tropical Diseases, 2021, 15, e0009036.	3.0	21
68	A prospective study of the effects of sustained vector surveillance following community-wide insecticide application on Trypanosoma cruzi infection of dogs and cats in rural Northwestern Argentina. American Journal of Tropical Medicine and Hygiene, 2006, 75, 753-61.	1.4	21
69	Predicting the success of an invader: Niche shift versus niche conservatism. Ecology and Evolution, 2019, 9, 12658-12675.	1.9	20
70	Detection of Zika virus in Aedes mosquitoes from Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2017, 111, 328-331.	1.8	19
71	Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Computational Biology, 2021, 17, e1008627.	3.2	19
72	Dengue illness impacts daily human mobility patterns in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007756.	3.0	17

#	Article	IF	CITATIONS
73	Pandemic-associated mobility restrictions could cause increases in dengue virus transmission. PLoS Neglected Tropical Diseases, 2021, 15, e0009603.	3.0	17
74	Prevention and control of Aedes transmitted infections in the post-pandemic scenario of COVID-19: challenges and opportunities for the region of the Americas. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200284.	1.6	17
75	The genetic structure of Aedes aegypti populations is driven by boat traffic in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2019, 13, e0007552.	3.0	16
76	The TIRS trial: protocol for a cluster randomized controlled trial assessing the efficacy of preventive targeted indoor residual spraying to reduce Aedes-borne viral illnesses in Merida, Mexico. Trials, 2020, 21, 839.	1.6	16
77	4. Insecticide-based approaches for dengue vector control. Ecology and Control of Vector-Borne Diseases, 2021, , 59-89.	0.7	14
78	CHICKEN COOPS, Triatoma dimidiata INFESTATION AND ITS INFECTION WITH Trypanosoma cruzi IN A RURAL VILLAGE OF YUCATAN, MEXICO. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2015, 57, 269-272.	1.1	12
79	Insecticide-treated house screening protects against Zika-infected Aedes aegypti in Merida, Mexico. PLoS Neglected Tropical Diseases, 2021, 15, e0009005.	3.0	11
80	Abundance and Seasonality of Aedes aegypti (Diptera: Culicidae) in Two Suburban Localities of South Mexico, With Implications for Wolbachia (Rickettsiales: Rickettsiaceae)-Carrying Male Releases for Population Suppression. Journal of Medical Entomology, 2021, 58, 1817-1825.	1.8	11
81	Evaluating Over-the-Counter Household Insecticide Aerosols for Rapid Vector Control of Pyrethroid-Resistant Aedes aegypti. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2108-2112.	1.4	11
82	Efficacy of targeted indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-resistant Aedes aegypti. PLoS Neglected Tropical Diseases, 2021, 15, e0009822.	3.0	11
83	Linking the vectorial capacity of multiple vectors to observed patterns of West Nile virus transmission. Journal of Applied Ecology, 2019, 56, 956-965.	4.0	10
84	Natural arbovirus infection rate and detectability of indoor female Aedes aegypti from Mérida, Yucatán, Mexico. PLoS Neglected Tropical Diseases, 2021, 15, e0008972.	3.0	10
85	First Known Feeding Trace of the Eocene Bottom-Dwelling Fish Notogoneus osculus and Its Paleontological Significance. PLoS ONE, 2010, 5, e10420.	2.5	10
86	Changing paradigms in control: considering the spatial heterogeneity of dengue transmission. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2017, 41, e16.	1.1	10
87	Dengue seroprevalence in a cohort of schoolchildren and their siblings in Yucatan, Mexico (2015-2016). PLoS Neglected Tropical Diseases, 2018, 12, e0006748.	3.0	9
88	Larval density mediates knockdown resistance to pyrethroid insecticides in adult Aedes aegypti. Parasites and Vectors, 2018, 11, 282.	2.5	9
89	Efficacy of Long-lasting Insecticidal Nets With Declining Physical and Chemical Integrity on Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2019, 57, 503-510.	1.8	8
90	Feeding Success and Host Selection by Culex quinquefasciatus Say Mosquitoes in Experimental Trials. Vector-Borne and Zoonotic Diseases, 2019, 19, 540-548.	1.5	8

#	Article	IF	CITATIONS
91	Heterogeneity of Dengue Illness in Community-Based Prospective Study, Iquitos, Peru. Emerging Infectious Diseases, 2020, 26, 2077-2086.	4.3	8
92	Evidence forAedes aegypti(Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon. Journal of Medical Entomology, 2015, 52, 726-729.	1.8	7
93	Environmental stochasticity and intraspecific competition influence the population dynamics of Culex quinquefasciatus (Diptera: Culicidae). Parasites and Vectors, 2018, 11, 114.	2.5	7
94	Larviciding <i>Culex</i> spp. (Diptera: Culicidae) Populations in Catch Basins and Its Impact on West Nile Virus Transmission in Urban Parks in Atlanta, GA. Journal of Medical Entomology, 2019, 56, 222-232.	1.8	7
95	Dengue control: the challenge ahead. Future Microbiology, 2011, 6, 251-253.	2.0	6
96	Zika Virus Infection in Pregnant Women, Yucatan, Mexico. Emerging Infectious Diseases, 2019, 25, 1452-1460.	4.3	5
97	Detección de Aedes (Stegomyia) albopictus (Skuse) en ovitrampas en Mérida, México. Biomedica, 2021, 41, 153-160.	0.7	5
98	Entomological Efficacy of Aerial Ultra-Low Volume Insecticide Applications Against Aedes aegypti (Diptera: Culicidae) in Mexico. Journal of Medical Entomology, 2019, 56, 1331-1337.	1.8	4
99	Measuring health related quality of life for dengue patients in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008477.	3.0	4
100	Protective effect of houseâ€screening against indoor Aedes aegypti in Mérida, Mexico: a cluster randomized controlled trial. Tropical Medicine and International Health, 2021, 26, 1677-1688.	2.3	4
101	Bioefficacy of Two Nonpyrethroid Insecticides for Targeted Indoor Residual Spraying Against Pyrethroid-Resistant Aedes aegypti. Journal of the American Mosquito Control Association, 2019, 35, 291-294.	0.7	4
102	The basic reproductive number for disease systems with multiple coupled heterogeneities. Mathematical Biosciences, 2020, 321, 108294.	1.9	3
103	Field Efficacy Trials of Aerial Ultra-Low-Volume Application of Insecticides Against Caged <i>Aedes aegypti</i> in Mexico. Journal of the American Mosquito Control Association, 2019, 35, 140-146.	0.7	3
104	Natural <i>Aedes</i> -Borne Virus Infection Detected in Male Adult <i>Aedes aegypti</i> (Diptera:) Tj ETQq0 0 0 rg 2022, 59, 1336-1346.	gBT /Overl 1.8	ock 10 Tf 50 3
105	Experimental evaluation of a metofluthrin passive emanator against Aedes albopictus. PLoS ONE, 2022, 17, e0267278.	2.5	2
106	Insecticide-Treated House Screens to Reduce Infestations of Dengue Vectors. , 2017, , .		1
107	An Integrated Intervention Model for the Prevention of Zika and Other Aedes-Borne Diseases in Women and their Families in Mexico. , 0, , .		1
108	The impact of dengue illness on social distancing and caregiving behavior. PLoS Neglected Tropical Diseases, 2021, 15, e0009614.	3.0	0

#	Article	IF	CITATIONS
109	Title is missing!. , 2020, 16, e1007743.		0
110	Title is missing!. , 2020, 16, e1007743.		0
111	Title is missing!. , 2020, 16, e1007743.		0
112	Title is missing!. , 2020, 16, e1007743.		0
113	Title is missing!. , 2021, 15, e0008972.		0
114	Title is missing!. , 2021, 15, e0008972.		0
115	Title is missing!. , 2021, 15, e0008972.		0
116	Title is missing!. , 2021, 15, e0008972.		0
117	SARS-CoV-2 antibody prevalence in a pediatric cohort of unvaccinated children in Mérida, YucatÃ;n, México. PLOS Global Public Health, 2022, 2, e0000354.	1.6	0