Nikos Vasilakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2733929/publications.pdf Version: 2024-02-01

	36303	33894
11,241	51	99
citations	h-index	g-index
153	153	12506
docs citations	times ranked	citing authors
	11,241 citations 153 docs citations	11,24151citationsh-index153153docs citationstimes ranked

#	Article	IF	CITATIONS
1	Aedes aegypti Shows Increased Susceptibility to Zika Virus via Both In Vitro and In Vivo Models of Type II Diabetes. Viruses, 2022, 14, 665.	3.3	3
2	Impact of SARS-CoV-2 Gamma lineage introduction and COVID-19 vaccination on the epidemiological landscape of a Brazilian city. Communications Medicine, 2022, 2, .	4.2	32
3	ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. Journal of General Virology, 2022, 103, .	2.9	46
4	Arboviral Infections in Neurological Disorders in Hospitalized Patients in São José do Rio Preto, São Paulo, Brazil. Viruses, 2022, 14, 1488.	3.3	3
5	Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness. Virology, 2021, 552, 94-106.	2.4	9
6	Presentation of fatal stroke due to SARSâ€CoVâ€⊋ and dengue virus coinfection. Journal of Medical Virology, 2021, 93, 1770-1775.	5.0	16
7	Role of mutational reversions and fitness restoration in Zika virus spread to the Americas. Nature Communications, 2021, 12, 595.	12.8	29
8	Zika Virus (Flaviviridae). , 2021, , 899-909.		0
9	Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Neglected Tropical Diseases, 2021, 15, e0009183.	3.0	6
10	Why Did ZIKV Perinatal Outcomes Differ in Distinct Regions of Brazil? An Exploratory Study of Two Cohorts. Viruses, 2021, 13, 736.	3.3	5
11	Shifts in mosquito diversity and abundance along a gradient from oil palm plantations to conterminous forests in Borneo. Ecosphere, 2021, 12, e03463.	2.2	11
12	Case Study of Two Post Vaccination SARS-CoV-2 Infections with P1 Variants in CoronaVac Vaccinees in Brazil. Viruses, 2021, 13, 1237.	3.3	23
13	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
14	Lack of Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spillover in Free-Living Neotropical Non-Human Primates, Brazil. Viruses, 2021, 13, 1933.	3.3	7
15	Population bottlenecks and founder effects: implications for mosquito-borne arboviral emergence. Nature Reviews Microbiology, 2021, 19, 184-195.	28.6	51
16	Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host and Microbe, 2021, 29, 1634-1648.e5.	11.0	5
17	Microclimate and the vertical stratification of potential bridge vectors of mosquito‑borne viruses captured by nets and ovitraps in a central Amazonian forest bordering Manaus, Brazil. Scientific Reports, 2021, 11, 21129.	3.3	6
18	ICTV Virus Taxonomy Profile: Nyamiviridae 2021. Journal of General Virology, 2021, 102, .	2.9	1

#	Article	IF	CITATIONS
19	Emergence potential of mosquito-borne arboviruses from the Florida Everglades. PLoS ONE, 2021, 16, e0259419.	2.5	9
20	Rocio Virus: An Updated View on an Elusive Flavivirus. Viruses, 2021, 13, 2293.	3.3	13
21	Dianke virus: A new mesonivirus species isolated from mosquitoes in Eastern Senegal. Virus Research, 2020, 275, 197802.	2.2	8
22	A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20190-20197.	7.1	53
23	The vertical stratification of potential bridge vectors of mosquito-borne viruses in a central Amazonian forest bordering Manaus, Brazil. Scientific Reports, 2020, 10, 18254.	3.3	27
24	Fatal Outcome of Ilheus Virus in the Cerebrospinal Fluid of a Patient Diagnosed with Encephalitis. Viruses, 2020, 12, 957.	3.3	17
25	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
26	Into the woods: Changes in mosquito community composition and presence of key vectors at increasing distances from the urban edge in urban forest parks in Manaus, Brazil. Acta Tropica, 2020, 206, 105441.	2.0	39
27	Flavivirus Infection Associated with Cerebrovascular Events. Viruses, 2020, 12, 671.	3.3	5
28	Identification of Mosquito Bloodmeals Collected in Diverse Habitats in Malaysian Borneo Using COI Barcoding. Tropical Medicine and Infectious Disease, 2020, 5, 51.	2.3	7
29	Characterization of Port Bolivar Virus, a Novel Entomobirnavirus (Birnaviridae) Isolated from Mosquitoes Collected in East Texas, USA. Viruses, 2020, 12, 390.	3.3	7
30	Re-emergence of yellow fever in the neotropics — quo vadis?. Emerging Topics in Life Sciences, 2020, 4, 411-422.	2.6	22
31	Unusual clinical manifestations of dengue disease – Real or imagined?. Acta Tropica, 2019, 199, 105134.	2.0	24
32	Molecular Epidemiology of Dengue in Panama: 25 Years of Circulation. Viruses, 2019, 11, 764.	3.3	18
33	Characterization of Three Novel Viruses from the Families Nyamiviridae, Orthomyxoviridae, and Peribunyaviridae, Isolated from Dead Birds Collected during West Nile Virus Surveillance in Harris County, Texas. Viruses, 2019, 11, 927.	3.3	5
34	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
35	Exploiting the Legacy of the Arbovirus Hunters. Viruses, 2019, 11, 471.	3.3	17
36	Seek and You Shall Find — Unknown Pathogens?. New England Journal of Medicine, 2019, 380, 2174-2175.	27.0	1

#	Article	IF	CITATIONS
37	Electron Microscopy in Discovery of Novel and Emerging Viruses from the Collection of the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA). Viruses, 2019, 11, 477.	3.3	10
38	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
39	Vector-borne transmission and evolution of Zika virus. Nature Ecology and Evolution, 2019, 3, 561-569.	7.8	96
40	Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science, 2019, 363, 607-610.	12.6	202
41	Potential for sylvatic and urban Aedes mosquitoes from Senegal to transmit the new emerging dengue serotypes 1, 3 and 4 in West Africa. PLoS Neglected Tropical Diseases, 2019, 13, e0007043.	3.0	26
42	Support for the Transmission-Clearance Trade-Off Hypothesis from a Study of Zika Virus Delivered by Mosquito Bite to Mice. Viruses, 2019, 11, 1072.	3.3	11
43	Strengthening the Interaction of the Virology Community with the International Committee on Taxonomy of Viruses (ICTV) by Linking Virus Names and Their Abbreviations to Virus Species. Systematic Biology, 2019, 68, 828-839.	5.6	11
44	Genomic characterisation of Cuiaba and Charleville viruses: arboviruses (family Rhabdoviridae, genus) Tj ETQq0 C) 0 _[gBT /C	verlock 10 Tf
45	Characterization of Triniti virus supports its reclassification in the family Peribunyaviridae. Journal of General Virology, 2019, 100, 137-144.	2.9	6
46	ICTV Virus Taxonomy Profile: Artoviridae. Journal of General Virology, 2019, 100, 1202-1203.	2.9	1
47	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	2.1	157
48	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
49	Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells. Antiviral Research, 2018, 151, 55-62.	4.1	40
50	Age and Sex in the Zika Pandemic Era. Journal of Infectious Diseases, 2018, 217, 1675-1677.	4.0	2
51	The reintroduction of DENV-2 in 2011 in Panama and subsequent outbreak characteristic. Acta Tropica, 2018, 177, 58-65.	2.0	3
52	Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annual Review of Medicine, 2018, 69, 395-408.	12.2	313
53	A Tale of Two Viruses: Does Heterologous Flavivirus Immunity Enhance Zika Disease?. Trends in Microbiology, 2018, 26, 186-190.	7.7	27
54	Genome Sequence of Chiqui Virus, a Novel Reovirus Isolated from Mosquitoes Collected in Colombia. Microbiology Resource Announcements, 2018, 7, .	0.6	2

#	Article	IF	CITATIONS
55	ZIKV Demonstrates Minimal Pathologic Effects and Mosquito Infectivity in Viremic Cynomolgus Macaques. Viruses, 2018, 10, 661.	3.3	9
56	Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Scientific Reports, 2018, 8, 16034.	3.3	68
57	Viral immunogenicity determines epidemiological fitness in a cohort of DENV-1 infection in Brazil. PLoS Neglected Tropical Diseases, 2018, 12, e0006525.	3.0	17
58	Reversible sensory polyneuropathy during an arboviral outbreak in Salvador, Bahia, Brazil. Journal of the Neurological Sciences, 2018, 391, 3-4.	0.6	1
59	Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses, 2018, 10, 434.	3.3	23
60	Did Zika Virus Mutate to Cause Severe Outbreaks?. Trends in Microbiology, 2018, 26, 877-885.	7.7	43
61	ICTV Virus Taxonomy Profile: Rhabdoviridae. Journal of General Virology, 2018, 99, 447-448.	2.9	207
62	Experimental Zika Virus Infection of Neotropical Primates. American Journal of Tropical Medicine and Hygiene, 2018, 98, 173-177.	1.4	38
63	Characterization of Three New Insect-Specific Flaviviruses: Their Relationship to the Mosquito-Borne Flavivirus Pathogens. American Journal of Tropical Medicine and Hygiene, 2018, 98, 410-419.	1.4	45
64	Characterization of the Gamboa Virus Serogroup (Orthobunyavirus Genus, Peribunyaviridae Family). American Journal of Tropical Medicine and Hygiene, 2018, 98, 1502-1511.	1.4	9
65	Bunyavirus Taxonomy: Limitations and Misconceptions Associated with the Current ICTV Criteria Used for Species Demarcation. American Journal of Tropical Medicine and Hygiene, 2018, 99, 11-16.	1.4	21
66	Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection. Stem Cell Reports, 2017, 8, 715-727.	4.8	115
67	Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus. Virology, 2017, 504, 152-167.	2.4	68
68	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
69	Insect-Specific Viruses. Advances in Virus Research, 2017, 98, 119-146.	2.1	58
70	Evaluation of Aptima Zika Virus Assay. Journal of Clinical Microbiology, 2017, 55, 2198-2203.	3.9	19
71	Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nature Reviews Drug Discovery, 2017, 16, 565-586.	46.4	227
72	Viral Load and Cytokine Response Profile Does Not Support Antibody-Dependent Enhancement in Dengue-Primed Zika Virus–Infected Patients. Clinical Infectious Diseases, 2017, 65, 1260-1265.	5.8	85

#	Article	IF	CITATIONS
73	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	4.1	104
74	Flavivirus transmission focusing on Zika. Current Opinion in Virology, 2017, 22, 30-35.	5.4	87
75	Sinu virus, a novel and divergent orthomyxovirus related to members of the genus Thogotovirus isolated from mosquitoes in Colombia. Virology, 2017, 501, 166-175.	2.4	22
76	Genomes of viral isolates derived from different mosquitos species. Virus Research, 2017, 242, 49-57.	2.2	40
77	The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Research, 2017, 227, 158-170.	2.2	200
78	<i>Almendravirus</i> : A Proposed New Genus of Rhabdoviruses Isolated from Mosquitoes in Tropical Regions of the Americas. American Journal of Tropical Medicine and Hygiene, 2017, 96, 100-109.	1.4	27
79	The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Tropica, 2017, 166, 155-163.	2.0	322
80	History and Emergence of Zika Virus. Journal of Infectious Diseases, 2017, 216, S860-S867.	4.0	112
81	Variation in <i>Aedes aegypti</i> Mosquito Competence for Zika Virus Transmission. Emerging Infectious Diseases, 2017, 23, 625-632.	4.3	147
82	Lack of evidence for Zika virus transmission by Culex mosquitoes. Emerging Microbes and Infections, 2017, 6, 1-2.	6.5	24
83	Abundance and distribution of sylvatic dengue virus vectors in three different land cover types in Sarawak, Malaysian Borneo. Parasites and Vectors, 2017, 10, 406.	2.5	42
84	Characterization of five unclassified orthobunyaviruses (Bunyaviridae) from Africa and the Americas. Journal of General Virology, 2017, 98, 2258-2266.	2.9	13
85	ICTV Virus Taxonomy Profile: Nyamiviridae. Journal of General Virology, 2017, 98, 2914-2915.	2.9	5
86	Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. PLoS Neglected Tropical Diseases, 2017, 11, e0005187.	3.0	110
87	Differential Vector Competency of Aedes albopictus Populations from the Americas for Zika Virus. American Journal of Tropical Medicine and Hygiene, 2017, 97, 330-339.	1.4	72
88	Experimental Infection with and Maintenance of Cell Fusing Agent Virus (Flavivirus) in Aedes aegypti. American Journal of Tropical Medicine and Hygiene, 2017, 97, 299-304.	1.4	24
89	Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise. PLoS Neglected Tropical Diseases, 2016, 10, e0004517.	3.0	287
90	Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. PLoS Neglected Tropical Diseases, 2016, 10, e0005055.	3.0	89

#	Article	IF	CITATIONS
91	Modeling Zika Virus Infection in Mice. Cell Stem Cell, 2016, 19, 4-6.	11.1	30
92	Transient Hearing Loss in Adults Associated with Zika Virus Infection. Clinical Infectious Diseases, 2016, 64, ciw770.	5.8	23
93	Experimental Zika Virus Infection in a Neotropical Primate Model. Open Forum Infectious Diseases, 2016, 3, .	0.9	2
94	Characterization of a Novel Murine Model to Study Zika Virus. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1362-1369.	1.4	417
95	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
96	An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host and Microbe, 2016, 19, 891-900.	11.0	252
97	Dengue virus surveillance: Detection of DENV-4 in the city of São José do Rio Preto, SP, Brazil. Acta Tropica, 2016, 164, 84-89.	2.0	14
98	A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host and Microbe, 2016, 20, 259-270.	11.0	420
99	Guillain–Barré Syndrome After Zika Virus Infection in Brazil. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1157-1160.	1.4	92
100	Outbreak of Zika Virus Infection, Chiapas State, Mexico, 2015, and First Confirmed Transmission by <i>Aedes aegypti</i> Mosquitoes in the Americas. Journal of Infectious Diseases, 2016, 214, 1349-1356.	4.0	173
101	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	5.6	17
102	Zika virus: History, emergence, biology, and prospects for control. Antiviral Research, 2016, 130, 69-80.	4.1	571
103	Zika Virus: Diagnosis, Therapeutics, and Vaccine. ACS Infectious Diseases, 2016, 2, 170-172.	3.8	76
104	Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses. Journal of Virology, 2016, 90, 659-669.	3.4	242
105	The Arboviruses: Quo Vadis?. , 2016, , 1-6.		4
106	Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses, 2015, 7, 4911-4928.	3.3	211
107	Molecular classification of outcomes from dengue virus -3 infections. Journal of Clinical Virology, 2015, 64, 97-106.	3.1	14
108	Insect-Specific Viruses Detected in Laboratory Mosquito Colonies and Their Potential Implications for Experiments Evaluating Arbovirus Vector Competence. American Journal of Tropical Medicine and Hygiene, 2015, 92, 422-428.	1.4	58

#	Article	IF	CITATIONS
109	Evolution of Genome Size and Complexity in the Rhabdoviridae. PLoS Pathogens, 2015, 11, e1004664.	4.7	149
110	Genomic Characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora Viruses: Nairoviruses Naturally Infecting Bats, Shrews, and Ticks. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1041-1051.	1.4	36
111	Itaya virus, a NovelOrthobunyavirusAssociated with Human Febrile Illness, Peru. Emerging Infectious Diseases, 2015, 21, 781-8.	4.3	25
112	Insect-specific viruses and their potential impact on arbovirus transmission. Current Opinion in Virology, 2015, 15, 69-74.	5.4	122
113	Mercadeo Virus: A Novel Mosquito-Specific Flavivirus from Panama. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1014-1019.	1.4	21
114	Dengue viruses cluster antigenically but not as discrete serotypes. Science, 2015, 349, 1338-1343.	12.6	195
115	Ledantevirus: A Proposed New Genus in the Rhabdoviridae has a Strong Ecological Association with Bats. American Journal of Tropical Medicine and Hygiene, 2015, 92, 405-410.	1.4	27
116	A Newly Isolated Reovirus Has the Simplest Genomic and Structural Organization of Any Reovirus. Journal of Virology, 2015, 89, 676-687.	3.4	50
117	GeneSV – an Approach to Help Characterize Possible Variations in Genomic and Protein Sequences. Bioinformatics and Biology Insights, 2014, 8, BBI.S13076.	2.0	5
118	Koolpinyah and Yata viruses: Two newly recognised ephemeroviruses from tropical regions of Australia and Africa. Veterinary Microbiology, 2014, 174, 547-553.	1.9	10
119	Seroprevalence of Neutralizing Antibodies Against Dengue Virus in Two Localities in the State of Morelos, Mexico. American Journal of Tropical Medicine and Hygiene, 2014, 91, 1057-1065.	1.4	38
120	Infection Dynamics of Sylvatic Dengue Virus in a Natural Primate Host, the African Green Monkey. American Journal of Tropical Medicine and Hygiene, 2014, 91, 672-676.	1.4	20
121	Whole Genome Analysis of Sierra Nevada Virus, a Novel Mononegavirus in the Family Nyamiviridae. American Journal of Tropical Medicine and Hygiene, 2014, 91, 159-164.	1.4	14
122	Lineage II of Southeast Asian/American DENV-2 is Associated with a Severe Dengue Outbreak in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 2014, 91, 611-620.	1.4	50
123	Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru. Journal of General Virology, 2014, 95, 787-792.	2.9	39
124	Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range. Virology Journal, 2014, 11, 97.	3.4	65
125	Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae. Virology Journal, 2013, 10, 219.	3.4	14
126	Malpais spring virus is a new species in the genus vesiculovirus. Virology Journal, 2013, 10, 69.	3.4	11

#	Article	IF	CITATIONS
127	Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal. Virology, 2013, 444, 80-89.	2.4	26
128	Identification of a new newcastle disease virus isolate from Indonesia represents an ancestral lineage of class II genotype XIII. Virus Genes, 2013, 47, 168-172.	1.6	10
129	Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea. Journal of General Virology, 2013, 94, 2609-2615.	2.9	28
130	Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiology, 2013, 8, 155-176.	2.0	124
131	Emergence potential of sylvatic dengue virus type 4 in the urban transmission cycle is restrained by vaccination and homotypic immunity. Virology, 2013, 439, 34-41.	2.4	24
132	Fever versus fever: The role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infection, Genetics and Evolution, 2013, 19, 292-311.	2.3	152
133	Negevirus: a Proposed New Taxon of Insect-Specific Viruses with Wide Geographic Distribution. Journal of Virology, 2013, 87, 2475-2488.	3.4	166
134	Genetic and phenotypic characterization of sylvatic dengue virus type 4 strains. Virology, 2012, 423, 58-67.	2.4	37
135	Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nature Reviews Microbiology, 2011, 9, 532-541.	28.6	274
136	Dengue — Quo tu et quo vadis?. Viruses, 2011, 3, 1562-1608.	3.3	207
137	Sylvatic Dengue Viruses Share the Pathogenic Potential of Urban/Endemic Dengue Viruses. Journal of Virology, 2010, 84, 3726-3728.	3.4	24
138	Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells. PLoS Pathogens, 2009, 5, e1000467.	4.7	146
139	Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infection, Genetics and Evolution, 2009, 9, 523-540.	2.3	354
140	Genetic and phenotypic characterization of sylvatic dengue virus type 2 strains. Virology, 2008, 377, 296-307.	2.4	51
141	Chapter 1 The History and Evolution of Human Dengue Emergence. Advances in Virus Research, 2008, 72, 1-76.	2.1	163
142	Arbovirus evolution <i>in vivo</i> is constrained by host alternation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6970-6975.	7.1	182
143	Sylvatic Dengue Virus Type 2 Activity in Humans, Nigeria, 1966. Emerging Infectious Diseases, 2008, 14, 502-504.	4.3	54
144	Antigenic Relationships between Sylvatic and Endemic Dengue Viruses. American Journal of Tropical Medicine and Hygiene, 2008, 79, 128-132.	1.4	29

#	Article	IF	CITATIONS
145	Antigenic relationships between sylvatic and endemic dengue viruses. American Journal of Tropical Medicine and Hygiene, 2008, 79, 128-32.	1.4	26
146	Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology, 2007, 358, 402-412.	2.4	78
147	Evolutionary Processes among Sylvatic Dengue Type 2 Viruses. Journal of Virology, 2007, 81, 9591-9595.	3.4	64