
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2733139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 2004, 35, 143-176.	1.8	2,034
2	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	13.7	1,448
3	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	6.0	876
4	Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 2016, 43, 2873-2879.	1.5	590
5	Toward Direct Measurement of Atmospheric Nucleation. Science, 2007, 318, 89-92.	6.0	478
6	A new atmospherically relevant oxidant of sulphur dioxide. Nature, 2012, 488, 193-196.	13.7	465
7	High Natural Aerosol Loading over Boreal Forests. Science, 2006, 312, 261-263.	6.0	447
8	Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmospheric Chemistry and Physics, 2006, 6, 4079-4091.	1.9	444
9	Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 2012, 7, 1651-1667.	5.5	435
10	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361, 278-281.	6.0	415
11	On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90, 132-150.	1.8	414
12	Contribution of particle formation to global cloud condensation nuclei concentrations. Geophysical Research Letters, 2008, 35, .	1.5	400
13	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	1.9	392
14	The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmospheric Chemistry and Physics, 2006, 6, 5631-5648.	1.9	364
15	Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013, 13, 5813-5830.	1.9	352
16	Analytical formulae connecting the "real―and the "apparent―nucleation rate and the nuclei number concentration for atmospheric nucleation events. Journal of Aerosol Science, 2002, 33, 609-622.	1.8	344
17	Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7123-7128.	3.3	337
18	Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and HyytiÃäAtmospheric Chemistry and Physics, 2007, 7, 1899-1914.	1.9	329

#	Article	IF	CITATIONS
19	Atmospheric new particle formation and growth: review of field observations. Environmental Research Letters, 2018, 13, 103003.	2.2	308
20	Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmospheric Chemistry and Physics, 2013, 13, 10545-10554.	1.9	286
21	Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12, 12037-12059.	1.9	285
22	Enhanced air pollution via aerosol-boundary layer feedback in China. Scientific Reports, 2016, 6, 18998.	1.6	285
23	Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 2013, 6, 438-442.	5.4	282
24	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
25	On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 11223-11242.	1.9	262
26	Particulate matter pollution over China and the effects of control policies. Science of the Total Environment, 2017, 584-585, 426-447.	3.9	252
27	EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.	1.9	248
28	Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation. Annual Review of Physical Chemistry, 2014, 65, 21-37.	4.8	242
29	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	13.7	237
30	Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011, 11, 767-798.	1.9	228
31	Initial steps of aerosol growth. Atmospheric Chemistry and Physics, 2004, 4, 2553-2560.	1.9	207
32	On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 2005, 5, 409-416.	1.9	205
33	Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	195
34	Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	175
35	Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophysical Research Letters, 2014, 41, 2644-2651.	1.5	175
36	Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation. Journal of Aerosol Science, 2007, 38, 988-994.	1.8	172

#	Article	IF	CITATIONS
37	Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	1.9	170
38	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
39	Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model. Atmospheric Chemistry and Physics, 2009, 9, 1747-1766.	1.9	153
40	Air pollution control and decreasing new particle formation lead to strong climate warming. Atmospheric Chemistry and Physics, 2012, 12, 1515-1524.	1.9	150
41	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	1.9	144
42	Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 350-361.	0.8	131
43	How significantly does coagulational scavenging limit atmospheric particle production?. Journal of Geophysical Research, 2001, 106, 24119-24125.	3.3	127
44	Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12679-12694.	1.2	122
45	Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmospheric Chemistry and Physics, 2011, 11, 13269-13285.	1.9	121
46	Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4, 6634.	1.6	121
47	Atmospheric gas-to-particle conversion: why NPF events are observed in megacities?. Faraday Discussions, 2017, 200, 271-288.	1.6	120
48	On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation. Atmospheric Chemistry and Physics, 2012, 12, 9113-9133.	1.9	119
49	Atmospheric new particle formation in China. Atmospheric Chemistry and Physics, 2019, 19, 115-138.	1.9	118
50	Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmospheric Chemistry and Physics, 2007, 7, 1333-1345.	1.9	116
51	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	5.8	116
52	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	1.9	113
53	Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmospheric Chemistry and Physics, 2015, 15, 12445-12464.	1.9	112
54	Production of "potential―cloud condensation nuclei associated with atmospheric new-particle formation in northern Finland. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	106

#	Article	IF	CITATIONS
55	Charged and total particle formation and growth rates during EUCAARI 2007 campaign in HyytiÃk¤ Atmospheric Chemistry and Physics, 2009, 9, 4077-4089.	1.9	104
56	Continuous measurements of optical properties of atmospheric aerosols in Mukteshwar, northern India. Journal of Geophysical Research, 2009, 114, .	3.3	98
57	Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15, 1147-1159.	1.9	96
58	Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmospheric Chemistry and Physics, 2009, 9, 5461-5474.	1.9	94
59	Reactivity of stabilized Criegee intermediates (sCls) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	1.9	94
60	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
61	Measurements of cloud droplet activation of aerosol particles at a clean subarctic background site. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	93
62	Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 1885-1898.	1.9	89
63	Number size distributions and concentrations of the continental summer aerosols in Queen Maud Land, Antarctica. Journal of Geophysical Research, 2003, 108, .	3.3	87
64	Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment. Atmospheric Chemistry and Physics, 2008, 8, 4823-4839.	1.9	86
65	Connection of Sulfuric Acid to Atmospheric Nucleation in Boreal Forest. Environmental Science & Technology, 2009, 43, 4715-4721.	4.6	84
66	Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010. Atmospheric Chemistry and Physics, 2011, 11, 12959-12972.	1.9	84
67	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	1.9	84
68	Long-term analysis of clear-sky new particle formation events and nonevents in HyytiÃÞATMospheric Chemistry and Physics, 2017, 17, 6227-6241.	1.9	84
69	Chemical composition, main sources and temporal variability of PM ₁ aerosols in southern African grassland. Atmospheric Chemistry and Physics, 2014, 14, 1909-1927.	1.9	81
70	Physical properties of aerosol particles at a Himalayan background site in India. Journal of Geophysical Research, 2009, 114, .	3.3	79
71	Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica. Science Advances, 2018, 4, eaat9744.	4.7	79
72	Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing. Environmental Science & Technology, 2020, 54, 8547-8557.	4.6	78

#	Article	IF	CITATIONS
73	Secondary organics and atmospheric cloud condensation nuclei production. Journal of Geophysical Research, 2000, 105, 9255-9264.	3.3	77
74	Long-term observation of air pollution-weather/climate interactions at the SORPES station: a review and outlook. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	75
75	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.	1.6	74
76	Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic. Atmospheric Environment, 2011, 45, 4042-4050.	1.9	73
77	BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmospheric Chemistry and Physics, 2012, 12, 10077-10096.	1.9	73
78	Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 2020, 134, 105283.	4.8	73
79	Annual and interannual variation in boreal forest aerosol particle number and volume concentration and their connection to particle formation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 495.	0.8	72
80	An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Science and Technology, 2011, 45, 522-532.	1.5	72
81	Aerosols and nucleation in eastern China: first insights from the new SORPES-NJU station. Atmospheric Chemistry and Physics, 2014, 14, 2169-2183.	1.9	72
82	Measurements of sub-3â€`nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities. Atmospheric Chemistry and Physics, 2017, 17, 2163-2187.	1.9	71
83	Characterization of new particle formation events at a background site in Southern Sweden: relation to air mass history. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 330.	0.8	70
84	Sulfuric acid–amine nucleation in urban Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2457-2468.	1.9	70
85	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	1.5	70
86	The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation. Atmospheric Chemistry and Physics, 2013, 13, 10285-10301.	1.9	69
87	New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests. Biogeosciences, 2014, 11, 1331-1344.	1.3	69
88	Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation. Atmospheric Chemistry and Physics, 2007, 7, 2705-2720.	1.9	64
89	Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar5218.	4.7	64
90	Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities. Nature Geoscience, 2022, 15, 255-261.	5.4	64

#	Article	IF	CITATIONS
91	Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 2019, 19, 14477-14492.	1.9	61
92	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
93	Regional effect on urban atmospheric nucleation. Atmospheric Chemistry and Physics, 2016, 16, 8715-8728.	1.9	60
94	Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 135-146.	0.8	59
95	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmospheric Chemistry and Physics, 2015, 15, 12211-12229.	1.9	58
96	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	1.9	57
97	Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 318.	0.8	56
98	Atmospheric new particle formation: real and apparent growth of neutral and charged particles. Atmospheric Chemistry and Physics, 2011, 11, 4939-4955.	1.9	55
99	Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010. Atmospheric Chemistry and Physics, 2014, 14, 4733-4748.	1.9	54
100	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	2.0	54
101	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
102	Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nature Communications, 2021, 12, 6416.	5.8	53
103	Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 9203-9215.	1.9	52
104	Variation of size-segregated particle number concentrations in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 1201-1216.	1.9	52
105	Observations on nocturnal growth of atmospheric clusters. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 365.	0.8	51
106	Deep convective clouds as aerosol production engines: Role of insoluble organics. Journal of Geophysical Research, 2006, 111, .	3.3	50
107	Antarctic new particle formation from continental biogenic precursors. Atmospheric Chemistry and Physics, 2013, 13, 3527-3546.	1.9	50
108	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50

#	Article	IF	CITATIONS
109	Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests. Atmospheric Chemistry and Physics, 2018, 18, 17863-17881.	1.9	50
110	Modeling Dry Deposition of Aerosol Particles onto Rough Surfaces. Aerosol Science and Technology, 2012, 46, 44-59.	1.5	49
111	Introduction: The Pan-Eurasian Experiment (PEEX) – multidisciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry and Physics, 2015, 15, 13085-13096.	1.9	49
112	Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nature Protocols, 2020, 15, 1013-1040.	5.5	49
113	Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10, 3743-3757.	1.9	48
114	Simulations on the effect of sulphuric acid formation on atmospheric aerosol concentrations. Atmospheric Environment, 1995, 29, 377-382.	1.9	47
115	Parameterizing the formation rate of new particles: The effect of nuclei self-coagulation. Journal of Aerosol Science, 2010, 41, 621-636.	1.8	47
116	Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 2016, 16, 2477-2492.	1.9	47
117	Number size distributions and concentrations of marine aerosols: Observations during a cruise between the English Channel and the coast of Antarctica. Journal of Geophysical Research, 2002, 107, AAC 6-1.	3.3	46
118	Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 7473-7487.	1.9	46
119	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	1.9	46
120	A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing. Atmospheric Chemistry and Physics, 2019, 19, 1971-1983.	1.9	46
121	New insights into nocturnal nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4297-4312.	1.9	45
122	Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmospheric Chemistry and Physics, 2017, 17, 5623-5641.	1.9	45
123	New particle formation in air mass transported between two measurement sites in Northern Finland. Atmospheric Chemistry and Physics, 2006, 6, 2811-2824.	1.9	43
124	On secondary new particle formation in China. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	43
125	Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations. Atmospheric Chemistry and Physics, 2020, 20, 11747-11766.	1.9	42
126	Charging state of the atmospheric nucleation mode: Implications for separating neutral and ionâ€induced nucleation. Journal of Geophysical Research, 2007, 112, .	3.3	40

#	Article	IF	CITATIONS
127	Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, HyytiÃÞA़¤Finland. Atmospheric Chemistry and Physics, 2009, 9, 667-676.	1.9	40
128	Boundary layer nucleation as a source of new CCN in savannah environment. Atmospheric Chemistry and Physics, 2013, 13, 1957-1972.	1.9	40
129	Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 2021, 14, 4-9.	5.4	40
130	Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas Cloud Experiment (2nd PaCE): method development and data evaluation. Atmospheric Chemistry and Physics, 2009, 9, 4841-4854.	1.9	38
131	Climate Feedbacks Linking the Increasing Atmospheric CO2 Concentration, BVOC Emissions, Aerosols and Clouds in Forest Ecosystems. Tree Physiology, 2013, , 489-508.	0.9	38
132	Growth rates during coastal and marine new particle formation in western Ireland. Journal of Geophysical Research, 2010, 115, .	3.3	36
133	Trends in new particle formation in eastern Lapland, Finland: effect of decreasing sulfur emissions from Kola Peninsula. Atmospheric Chemistry and Physics, 2014, 14, 4383-4396.	1.9	36
134	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	1.9	36
135	Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chemistry and Physics, 2020, 20, 12721-12740.	1.9	36
136	Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16, 1017-1028.	1.9	35
137	Refined classification and characterization of atmospheric new-particle formation events using air ions. Atmospheric Chemistry and Physics, 2018, 18, 17883-17893.	1.9	35
138	The natural aerosol over Northern Europe and its relation to anthropogenic emissions—implications of important climate feedbacks. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 473.	0.8	34
139	Unprecedented Ambient Sulfur Trioxide (SO ₃) Detection: Possible Formation Mechanism and Atmospheric Implications. Environmental Science and Technology Letters, 2020, 7, 809-818.	3.9	34
140	Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus, Series B: Chemical and Physical Meteorology, 2022, 56, 135.	0.8	33
141	Effects of SO ₂ oxidation on ambient aerosol growth in water and ethanol vapours. Atmospheric Chemistry and Physics, 2005, 5, 767-779.	1.9	33
142	Measurements of the relation between aerosol properties and microphysics and chemistry of low level liquid water clouds in Northern Finland. Atmospheric Chemistry and Physics, 2008, 8, 6925-6938.	1.9	33
143	The role of H ₂ SO ₄ -NH <sub anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric Chemistry and Physics. 2018. 18. 13231-13243.</sub 	>3& 1.9	amp;lt;/sub8
144	Comprehensive analysis of particle growth rates from nucleation mode to cloud condensation nuclei in boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 12085-12103.	1.9	31

#	Article	IF	CITATIONS
145	Observational signature of the direct radiative effect by natural boreal forest aerosols and its relation to the corresponding first indirect effect. Journal of Geophysical Research, 2009, 114, .	3.3	30
146	Aerosol-cloud interaction determined by both in situ and satellite data over a northern high-latitude site. Atmospheric Chemistry and Physics, 2010, 10, 10987-10995.	1.9	30
147	Vertical and horizontal distribution of regional new particle formation events in Madrid. Atmospheric Chemistry and Physics, 2018, 18, 16601-16618.	1.9	30
148	Mixing state and particle hygroscopicity of organic-dominated aerosols over the Pearl River Delta region in China. Atmospheric Chemistry and Physics, 2018, 18, 14079-14094.	1.9	30
149	Formation and growth of atmospheric nanoparticles in the eastern Mediterranean: results from long-term measurements and process simulations. Atmospheric Chemistry and Physics, 2019, 19, 2671-2686.	1.9	30
150	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	1.6	29
151	Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth. Geophysical Research Letters, 2015, 42, 10,486.	1.5	27
152	Technical note: New particle formation event forecasts during PEGASOS–Zeppelin Northern mission 2013 in HyytiÃѬ҈¤Finland. Atmospheric Chemistry and Physics, 2015, 15, 12385-12396.	1.9	27
153	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
154	Multiple daytime nucleation events in semi-clean savannah and industrial environments in South Africa: analysis based on observations. Atmospheric Chemistry and Physics, 2013, 13, 5523-5532.	1.9	26
155	Ground-based observation of clusters and nucleation-mode particles in the Amazon. Atmospheric Chemistry and Physics, 2018, 18, 13245-13264.	1.9	26
156	Estimating the contribution of ion–ion recombination to sub-2 nm cluster concentrations from atmospheric measurements. Atmospheric Chemistry and Physics, 2013, 13, 11391-11401.	1.9	25
157	Influence of biogenic emissions from boreal forests on aerosol–cloud interactions. Nature Geoscience, 2022, 15, 42-47.	5.4	25
158	Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin. Atmospheric Chemistry and Physics, 2020, 20, 8181-8200.	1.9	24
159	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	23
160	Analysis of particle size distribution changes between three measurement sites in northern Scandinavia. Atmospheric Chemistry and Physics, 2013, 13, 11887-11903.	1.9	22
161	Exploring non-linear associations between atmospheric new-particle formation and ambient variables: a mutual information approach. Atmospheric Chemistry and Physics, 2018, 18, 12699-12714.	1.9	21
162	Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. Science of the Total Environment, 2021, 753, 142207.	3.9	21

#	Article	IF	CITATIONS
163	Aerosol particle formation in the upper residual layer. Atmospheric Chemistry and Physics, 2021, 21, 7901-7915.	1.9	21
164	Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia. EcoHealth, 2021, 18, 217-228.	0.9	21
165	Vertical profiles of sub-3 nm particles over the boreal forest. Atmospheric Chemistry and Physics, 2019, 19, 4127-4138.	1.9	20
166	Toward Building a Physical Proxy for Gas-Phase Sulfuric Acid Concentration Based on Its Budget Analysis in Polluted Yangtze River Delta, East China. Environmental Science & Technology, 2021, 55, 6665-6676.	4.6	20
167	Aerosol Particle Formation Events at Two Siberian Stations. , 2007, , 840-844.		20
168	The occurrence of sulfuric acid-water nucleation in plumes: urban environment. Tellus, Series B: Chemical and Physical Meteorology, 1996, 48, 65-82.	0.8	19
169	A numerical comparison of different methods for determining the particle formation rate. Atmospheric Chemistry and Physics, 2012, 12, 2289-2295.	1.9	19
170	Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber. Atmospheric Chemistry and Physics, 2015, 15, 10777-10798.	1.9	19
171	New particle formation, growth and apparent shrinkage at a rural background site in western Saudi Arabia. Atmospheric Chemistry and Physics, 2019, 19, 10537-10555.	1.9	19
172	An indicator for sulfuric acid–amine nucleation in atmospheric environments. Aerosol Science and Technology, 2021, 55, 1059-1069.	1.5	19
173	Towards understanding the characteristics of new particle formation in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2021, 21, 9223-9251.	1.9	19
174	PAN EURASIAN EXPERIMENT (PEEX) - A RESEARCH INITIATIVE MEETING THE GRAND CHALLENGES OF THE CHANGING ENVIRONMENT OF THE NORTHERN PAN-EURASIAN ARCTIC-BOREAL AREAS. Geography, Environment, Sustainability, 2014, 7, 13-48.	0.6	19
175	Parameterization of ion-induced nucleation rates based on ambient observations. Atmospheric Chemistry and Physics, 2011, 11, 3393-3402.	1.9	18
176	Estimating atmospheric nucleation rates from size distribution measurements: Analytical equations for the case of size dependent growth rates. Journal of Aerosol Science, 2014, 69, 13-20.	1.8	18
177	Temperature influence on the natural aerosol budget over boreal forests. Atmospheric Chemistry and Physics, 2014, 14, 8295-8308.	1.9	18
178	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009.	1.9	18
179	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
180	The contribution of new particle formation and subsequent growth to haze formation. Environmental Science Atmospheres, 2022, 2, 352-361.	0.9	17

#	Article	IF	CITATIONS
181	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & amp; Technology, 2022, 56, 770-778.	4.6	16
182	Opinion: Gigacity– a source of problems or the new way to sustainable development. Atmospheric Chemistry and Physics, 2021, 21, 8313-8322.	1.9	15
183	Effect of aerosol size distribution changes on AOD, CCN and cloud droplet concentration: Case studies from Erfurt and Melpitz, Germany. Journal of Geophysical Research, 2012, 117, .	3.3	14
184	How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?. Atmospheric Chemistry and Physics, 2016, 16, 14297-14315.	1.9	14
185	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	1.9	14
186	Cluster Analysis of Submicron Particle Number Size Distributions at the SORPES Station in the Yangtze River Delta of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034004.	1.2	13
187	Features in air ions measured by an air ion spectrometer (AIS) at DomeÂC. Atmospheric Chemistry and Physics, 2017, 17, 13783-13800.	1.9	12
188	Advancing global aerosol simulations with size-segregated anthropogenic particle number emissions. Atmospheric Chemistry and Physics, 2018, 18, 10039-10054.	1.9	12
189	Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21, 11437-11452.	1.9	12
190	Aerosol charging state at an urban site: new analytical approach and implications for ion-induced nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4647-4666.	1.9	10
191	Estimating cloud condensation nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization. Atmospheric Chemistry and Physics, 2019, 19, 15483-15502.	1.9	10
192	Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction. Atmospheric Chemistry and Physics, 2021, 21, 12173-12187.	1.9	10
193	Quiet New Particle Formation in the Atmosphere. Frontiers in Environmental Science, 0, 10, .	1.5	10
194	A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations. Atmospheric Chemistry and Physics, 2016, 16, 1955-1970.	1.9	9
195	Observations of ozone depletion events in a Finnish boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 49-63.	1.9	9
196	A simple model for the time evolution of the condensation sink in the atmosphere for intermediate Knudsen numbers. Atmospheric Chemistry and Physics, 2018, 18, 2431-2442.	1.9	9
197	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 12649-12663.	1.9	9
198	Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters. Journal of Aerosol Science, 2022, 159, 105878.	1.8	9

#	Article	IF	CITATIONS
199	Roll vortices induce new particle formation bursts in the planetary boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 11841-11854.	1.9	9
200	Wintertime subarctic new particle formation from Kola Peninsula sulfur emissions. Atmospheric Chemistry and Physics, 2021, 21, 17559-17576.	1.9	9
201	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	1.9	9
202	Using measurements of the aerosol charging state in determination of the particle growth rate and the proportion of ion-induced nucleation. Atmospheric Chemistry and Physics, 2013, 13, 463-486.	1.9	8
203	Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer. Atmospheric Measurement Techniques, 2022, 15, 1957-1965.	1.2	8
204	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	2.6	8
205	Impacts of emission reductions on aerosol radiative effects. Atmospheric Chemistry and Physics, 2015, 15, 5501-5519.	1.9	7
206	Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations. Environmental Research Letters, 2015, 10, 104005.	2.2	7
207	Observational evidence for aerosols increasing upper tropospheric humidity. Atmospheric Chemistry and Physics, 2016, 16, 14331-14342.	1.9	7
208	Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2017, 17, 3659-3672.	1.9	7
209	Combining airborne in situ and ground-based lidar measurements for attribution of aerosol layers. Atmospheric Chemistry and Physics, 2018, 18, 10575-10591.	1.9	7
210	The Silk Road agenda of the Pan-Eurasian Experiment (PEEX) program. Big Earth Data, 2018, 2, 8-35.	2.0	6
211	The effect of urban morphological characteristics on the spatial variation of PM _{2.5} air quality in downtown Nanjing. Environmental Science Atmospheres, 2021, 1, 481-497.	0.9	6
212	Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth. Atmospheric Chemistry and Physics, 2021, 21, 2861-2880.	1.9	6
213	Clouds over HyytiÃÞĀÞFinland: an algorithm to classify clouds based on solar radiation and cloud base height measurements. Atmospheric Measurement Techniques, 2020, 13, 5595-5619.	1.2	6
214	In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups. Atmospheric Measurement Techniques, 2020, 13, 5129-5147.	1.2	6
215	Evaluation of convective boundary layer height estimates using radars operating at different frequency bands. Atmospheric Measurement Techniques, 2021, 14, 7341-7353.	1.2	6
216	Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season. Atmospheric Chemistry and Physics, 2021, 21, 17389-17431.	1.9	6

#	Article	IF	CITATIONS
217	Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science and Technology Letters, 2022, 9, 375-382.	3.9	6
218	Production of neutral molecular clusters by controlled neutralization of mobility standards. Aerosol Science and Technology, 2017, 51, 946-955.	1.5	5
219	Annual cycle of Scots pine photosynthesis. Atmospheric Chemistry and Physics, 2017, 17, 15045-15053.	1.9	5
220	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	1.9	5
221	An extensive data set for in situ microphysical characterization of low-level clouds in a Finnish sub-Arctic site. Earth System Science Data, 2022, 14, 637-649.	3.7	2
222	Long-term size-segregated cloud condensation nuclei counter (CCNc) measurements in a boreal environment and the implications for aerosol-cloud interactions. , 2013, , .		1
223	A Finnish Meteorological Institute–Aerosol Cloud Interaction Tube (FMI–ACIT): Experimental setup and tests of proper operation. Journal of Chemical Physics, 2018, 149, 124201.	1.2	1
224	Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: The impact of Kola air pollution to new particle formation. , 2013, , .		0
225	The impact of temperature on natural aerosol budget over boreal forests. , 2013, , .		0
226	Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory. Atmospheric Chemistry and Physics, 2018, 18, 13321-13328.	1.9	0