Edward J Goetzl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2733069/publications.pdf

Version: 2024-02-01

50244 37183 9,854 117 46 96 citations h-index g-index papers 119 119 119 8645 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	SARSâ€CoVâ€2 and Mitochondrial Proteins in Neuralâ€Derived Exosomes of COVIDâ€19. Annals of Neurology, 2022, 91, 772-781.	2.8	63
2	Neuronal and Astrocytic Extracellular Vesicle Biomarkers in Blood Reflect Brain Pathology in Mouse Models of Alzheimer's Disease. Cells, 2021, 10, 993.	1.8	37
3	Elevated complement mediator levels in endothelial-derived plasma exosomes implicate endothelial innate inflammation in diminished brain function of aging humans. Scientific Reports, 2021, 11, 16198.	1.6	14
4	Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Molecular Psychiatry, 2021, 26, 7355-7362.	4.1	36
5	Neural cellâ€derived plasma exosome protein abnormalities implicate mitochondrial impairment in first episodes of psychosis. FASEB Journal, 2021, 35, e21339.	0.2	22
6	Mitochondrial Electron Transport Chain Protein Abnormalities Detected in Plasma Extracellular Vesicles in Alzheimer's Disease. Biomedicines, 2021, 9, 1587.	1.4	19
7	Altered Functional Mitochondrial Protein Levels in Plasma Neuron-Derived Extracellular Vesicles of Patients With Gadolinium Deposition. Frontiers in Toxicology, 2021, 3, 797496.	1.6	3
8	Neuron-Derived Plasma Exosome Proteins after Remote Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 382-388.	1.7	47
9	Traumatic brain injury increases plasma astrocyteâ€derived exosome levels of neurotoxic complement proteins. FASEB Journal, 2020, 34, 3359-3366.	0.2	54
10	Acute Insulin Resistance and Rapid Alterations in Neuronal Derived Blood Exosome Concentration After Branched Endovascular Aortic Aneurysm Repair. European Journal of Vascular and Endovascular Surgery, 2020, 59, 457-463.	0.8	5
11	Decreased mitochondrial electron transport proteins and increased complement mediators in plasma neural-derived exosomes of early psychosis. Translational Psychiatry, 2020, 10, 361.	2.4	24
12	Advancing medicine for Alzheimer's disease: A plasma neural exosome platform. FASEB Journal, 2020, 34, 13079-13084.	0.2	11
13	Endothelialâ€derived plasma exosome proteins in Alzheimer's disease angiopathy. FASEB Journal, 2020, 34, 5967-5974.	0.2	21
14	Astrocyte- and Neuron-Derived Extracellular Vesicles from Alzheimer's Disease Patients Effect Complement-Mediated Neurotoxicity. Cells, 2020, 9, 1618.	1.8	52
15	Time-dependent cytokine and chemokine changes in mouse cerebral cortex following a mild traumatic brain injury. ELife, 2020, 9, .	2.8	21
16	Deficient neurotrophic factors of CSPG4â€ŧype neural cell exosomes in Alzheimer disease. FASEB Journal, 2019, 33, 231-238.	0.2	34
17	Association of Extracellular Vesicle Biomarkers With Alzheimer Disease in the Baltimore Longitudinal Study of Aging. JAMA Neurology, 2019, 76, 1340.	4.5	156
18	Neuron-Derived Exosome Proteins May Contribute to Progression From Repetitive Mild Traumatic Brain Injuries to Chronic Traumatic Encephalopathy. Frontiers in Neuroscience, 2019, 13, 452.	1.4	32

#	Article	IF	Citations
19	Biomarker-Drug and Liquid Biopsy Co-development for Disease Staging and Targeted Therapy: Cornerstones for Alzheimer's Precision Medicine and Pharmacology. Frontiers in Pharmacology, 2019, 10, 310.	1.6	35
20	Altered levels of plasma neuronâ€derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB Journal, 2019, 33, 5082-5088.	0.2	79
21	Complement protein levels in plasma astrocyteâ€derived exosomes are abnormal in conversion from mild cognitive impairment to Alzheimer's disease dementia. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 61-66.	1.2	70
22	High complement levels in astrocyteâ€derived exosomes of Alzheimer disease. Annals of Neurology, 2018, 83, 544-552.	2.8	248
23	Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer's disease. FASEB Journal, 2018, 32, 888-893.	0.2	155
24	"Liquid Biopsy―of White Matter Hyperintensity in Functionally Normal Elders. Frontiers in Aging Neuroscience, 2018, 10, 343.	1.7	18
25	Growth Hormone-Releasing Hormone Modulation of Neuronal Exosome Biomarkers in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2018, 66, 971-981.	1.2	33
26	Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease. Human Brain Mapping, 2017, 38, 1933-1940.	1.9	96
27	Multicellular hypothesis for the pathogenesis of Alzheimer's disease. FASEB Journal, 2017, 31, 1792-1795.	0.2	19
28	Altered cargo proteins of human plasma endothelial cell–derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal, 2017, 31, 3689-3694.	0.2	71
29	Neuronal exosomes reveal Alzheimer's disease biomarkers in Down syndrome. Alzheimer's and Dementia, 2017, 13, 541-549.	0.4	94
30	Plasma Extracellular Vesicles Enriched for Neuronal Origin: A Potential Window into Brain Pathologic Processes. Frontiers in Neuroscience, 2017, 11, 278.	1.4	299
31	Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 3, 63-72.	1.2	255
32	Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease. FASEB Journal, 2016, 30, 4141-4148.	0.2	281
33	Plasma neuronal exosomal levels of Alzheimer's disease biomarkers in normal aging. Annals of Clinical and Translational Neurology, 2016, 3, 399-403.	1.7	56
34	Cargo proteins of plasma astrocyteâ€derived exosomes in Alzheimer's disease. FASEB Journal, 2016, 30, 3853-3859.	0.2	280
35	Novel window on early human neurodevelopment via fetal exosomes in maternal blood. Annals of Clinical and Translational Neurology, 2016, 3, 381-385.	1.7	31
36	Human plasma plateletâ€derived exosomes: effects of aspirin. FASEB Journal, 2016, 30, 2058-2063.	0.2	76

#	Article	IF	Citations
37	Low neural exosomal levels of cellular survival factors in Alzheimer's disease. Annals of Clinical and Translational Neurology, 2015, 2, 769-773.	1.7	162
38	Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology, 2015, 85, 40-47.	1.5	355
39	Dysfunctionally phosphorylated type 1 insulin receptor substrate in neuralâ€derived blood exosomes of preclinical Alzheimer's disease. FASEB Journal, 2015, 29, 589-596.	0.2	278
40	Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A caseâ€control study. Alzheimer's and Dementia, 2015, 11, 600.	0.4	656
41	Aging enhances release of exosomal cytokine mRNAs by Aβ _{1â€42} â€stimulated macrophages. FASEB Journal, 2013, 27, 5141-5150.	0.2	60
42	Distinct energy requirements for human memory CD4 Tâ€cell homeostatic functions. FASEB Journal, 2013, 27, 342-349.	0.2	11
43	Distinctive immunoregulatory effects of adenosine on T cells of older humans. FASEB Journal, 2012, 26, 1301-1310.	0.2	14
44	Preferential enhancement of older human T cell cytokine generation, chemotaxis, proliferation and survival by lenalidomide. Clinical Immunology, 2011, 138, 201-211.	1.4	14
45	Defective T Cell Chemotaxis to Sphingosine 1-Phosphate and Chemokine CCL21 in Idiopathic T Lymphocytopenia. Journal of Clinical Immunology, 2011, 31, 744-751.	2.0	5
46	Gender specificity of altered human immune cytokine profiles in aging. FASEB Journal, 2010, 24, 3580-3589.	0.2	87
47	Human CD4 8 T cells are a distinctive immunoregulatory subset. FASEB Journal, 2010, 24, 2558-2566.	0.2	10
48	Immunosuppressive human antiâ€lymphocyte autoantibodies specific for the type 1 sphingosine 1â€phosphate receptor. FASEB Journal, 2009, 23, 1786-1796.	0.2	14
49	Changing paradigms in the immunological science of allergy: 2008. Current Allergy and Asthma Reports, 2008, 8, 28-31.	2.4	6
50	Diverse Mechanisms and Consequences of Immunoadoption of Neuromediator Systems. Annals of the New York Academy of Sciences, 2008, 1144, 56-60.	1.8	15
51	Nuclear factorâ€îºBâ€dependent reversal of agingâ€induced alterations in T cell cytokines. FASEB Journal, 2008, 22, 2142-2150.	0.2	62
52	Regulation of the roles of sphingosine 1-phosphate and its type 1 G protein-coupled receptor in T cell immunity and autoimmunity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 503-507.	1.2	19
53	Cutting Edge: Vasoactive Intestinal Peptide (VIP) Induces Differentiation of Th17 Cells with a Distinctive Cytokine Profile. Journal of Immunology, 2008, 180, 2772-2776.	0.4	55
54	Sphingosine 1â€phosphate and interleukinâ€4 signaling requirements for peripheral conversion of naÃ⁻ve T cells to adaptive CD4+25+ regulatory T cells. FASEB Journal, 2008, 22, 848.1.	0.2	0

#	Article	IF	CITATIONS
55	Type 1 Sphingosine 1-Phosphate G Protein-Coupled Receptor (S1P1) Mediation of Enhanced IL-4 Generation by CD4 T Cells from S1P1 Transgenic Mice. Journal of Immunology, 2007, 178, 4885-4890.	0.4	35
56	Distinctive T Cell-suppressive Signals from Nuclearized Type 1 Sphingosine 1-Phosphate G Protein-coupled Receptors. Journal of Biological Chemistry, 2007, 282, 1964-1972.	1.6	34
57	Cutting Edge: Alternative Signaling of Th17 Cell Development by Sphingosine 1-Phosphate. Journal of Immunology, 2007, 178, 5425-5428.	0.4	113
58	Th17 Augmentation in OTII TCR Plus T Cell-Selective Type 1 Sphingosine 1-Phosphate Receptor Double Transgenic Mice. Journal of Immunology, 2007, 178, 6806-6813.	0.4	43
59	Diverse pathways for nuclear signaling by G proteinâ€coupled receptors and their ligands. FASEB Journal, 2007, 21, 638-642.	0.2	40
60	Sphingosine 1â€phosphate as an intracellular messenger and extracellular mediator in immunity. Acta Paediatrica, International Journal of Paediatrics, 2007, 96, 49-52.	0.7	18
61	Changing paradigms in the immunological science of allergy. Current Allergy and Asthma Reports, 2007, 7, 7-10.	2.4	1
62	Distinctive T Cell Suppressive Signals from Nuclearized Type 1 Sphingosine 1â€Phosphate G Proteinâ€Coupled Receptors. FASEB Journal, 2007, 21, .	0.2	0
63	Hypothesis: VPAC G protein-coupled receptors for vasoactive intestinal peptide constitute a dynamic system for signaling T cells from plasma membrane and nuclear membrane complexes. Regulatory Peptides, 2006, 137, 75-78.	1.9	11
64	The Omnific Lysophospholipid Growth Factors. Annals of the New York Academy of Sciences, 2006, 905, xi-xiv.	1.8	12
65	Changing paradigms in the immunologic science of allergy. Current Allergy and Asthma Reports, 2006, $6,1 ext{-}3.$	2.4	3
66	Nitric Oxide Signaling via Nuclearized Endothelial Nitric-oxide Synthase Modulates Expression of the Immediate Early Genes iNOS and mPGES-1*. Journal of Biological Chemistry, 2006, 281, 16058-16067.	1.6	75
67	Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nature Reviews Immunology, 2005, 5, 560-570.	10.6	660
68	Type 1 sphingosine 1â€phosphate G proteinâ€coupled receptor signaling of lymphocyte functions requires sulfation of its extracellular aminoâ€terminal tyrosines. FASEB Journal, 2005, 19, 1926-1928.	0.2	22
69	Type 4 sphingosine 1â€phosphate G proteinâ€coupled receptor (S1P 4) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration. FASEB Journal, 2005, 19, 1731-1733.	0.2	142
70	Immunological Effects of Transgenic Constitutive Expression of the Type 1 Sphingosine 1-Phosphate Receptor by Mouse Lymphocytes. Journal of Immunology, 2005, 174, 1997-2003.	0.4	60
71	A Natural Variant Type II G Protein-coupled Receptor for Vasoactive Intestinal Peptide with Altered Function. Journal of Biological Chemistry, 2004, 279, 40259-40262.	1.6	31
72	The immunosuppressant FTY720 downâ€regulates sphingosine 1â€phosphate G proteinâ€coupled receptors. FASEB Journal, 2004, 18, 551-553.	0.2	499

#	Article	IF	Citations
73	Immunoregulatory lysophospholipids: new stars in the mast cell constellation. Current Allergy and Asthma Reports, 2004, 4, 175-177.	2.4	2
74	Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system. Journal of Cellular Biochemistry, 2004, 92, 1104-1114.	1.2	73
75	An IgM-kappa rat monoclonal antibody specific for the type 1 sphingosine 1-phosphate G protein-coupled receptor with antagonist and agonist activities. Immunology Letters, 2004, 93, 63-69.	1.1	15
76	Regulation of immunity by lysosphingolipids and their G protein–coupled receptors. Journal of Clinical Investigation, 2004, 114, 1531-1537.	3.9	105
77	Regulation of immunity by lysosphingolipids and their G protein–coupled receptors. Journal of Clinical Investigation, 2004, 114, 1531-1537.	3.9	56
78	Protein Kinase C $\ddot{l}\mu$ Dependence of the Recovery from Down-regulation of S1P1 G Protein-coupled Receptors of T Lymphocytes. Journal of Biological Chemistry, 2003, 278, 27737-27741.	1.6	31
79	Transduction of Multiple Effects of Sphingosine 1-Phosphate (S1P) on T Cell Functions by the S1P1 G Protein-Coupled Receptor. Journal of Immunology, 2003, 171, 3500-3507.	0.4	99
80	Modulation of Pro-inflammatory Gene Expression by Nuclear Lysophosphatidic Acid Receptor Type-1. Journal of Biological Chemistry, 2003, 278, 38875-38883.	1.6	126
81	Cutting Edge: Suppression of T Cell Chemotaxis by Sphingosine 1-Phosphate. Journal of Immunology, 2002, 169, 4084-4087.	0.4	123
82	Activationâ€regulated expression and chemotactic function of sphingosine 1â€phosphate receptors in mouse splenic T cells. FASEB Journal, 2002, 16, 1874-1878.	0.2	202
83	Immunoeffector and immunoregulatory activities of vasoactive intestinal peptide. Regulatory Peptides, 2002, 109, 199-208.	1.9	64
84	International Union of Pharmacology. XXXIV. Lysophospholipid Receptor Nomenclature. Pharmacological Reviews, 2002, 54, 265-269.	7.1	441
85	Lysophospholipid Growth Factors and Their G Protein-Coupled Receptors in Immunity, Coronary Artery Disease, and Cancer. Scientific World Journal, The, 2002, 2, 324-338.	0.8	30
86	Allergic diathesis in transgenic mice with constitutive T cell expression of inducible vasoactive intestinal peptide receptor. FASEB Journal, 2001, 15, 2489-2496.	0.2	80
87	Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. American Journal of Physiology - Cell Physiology, 2000, 278, C612-C618.	2.1	221
88	Altered expression and functional profile of lysophosphatidic acid receptors in mitogenâ€activated human blood T lymphocytes. FASEB Journal, 2000, 14, 2387-2389.	0.2	70
89	Inhibition of Expression of the Type I G Protein-Coupled Receptor for Vasoactive Intestinal Peptide (VPAC1) by Hammerhead Ribozymes. Biochemistry, 2000, 39, 9771-9777.	1.2	5
90	Mechanisms of Lysolipid Phosphate Effects on Cellular Survival and Proliferation. Annals of the New York Academy of Sciences, 2000, 905, 177-187.	1.8	46

#	Article	IF	CITATIONS
91	Vasoactive Intestinal Peptide Mediation of Development and Functions of T Lymphocytes. Annals of the New York Academy of Sciences, 2000, 921, 79-91.	1.8	37
92	Enhancement by vasoactive intestinal peptide of γâ€interferon production by antigenâ€stimulated type 1 helper T cells. FASEB Journal, 1999, 13, 347-353.	0.2	24
93	Lysophospholipid Enhancement of Human T Cell Sensitivity to Diphtheria Toxin by Increased Expression of Heparin-Binding Epidermal Growth Factor. Proceedings of the Association of American Physicians, 1999, 111, 259-269.	2.1	17
94	Selectivity of Effects of Vasoactive Intestinal Peptide on Macrophages and Lymphocytes in Compartmental Immune Responsesa. Annals of the New York Academy of Sciences, 1998, 840, 540-550.	1.8	32
95	Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate., 1998, 72, 147-157.		118
96	Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1â€phosphate. FASEB Journal, 1998, 12, 1589-1598.	0.2	499
97	Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate., 1998, 72, 147.		1
98	Vasoactive intestinal peptide enhancement of antigenâ€induced differentiation of a cultured line of mouse thymocytes. FASEB Journal, 1998, 12, 119-127.	0.2	6
99	ldentification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids1. FEBS Letters, 1997, 417, 279-282.	1.3	236
100	Changes in Adhesion Molecule Expression During Distinct Patterns of Immune Cell Migration in the Inflamed Lung Archives of Histology and Cytology, 1996, 59, 443-452.	0.2	13
101	Predominant expression of type II vasoactive intestinal peptide receptors by human T lymphoblastoma cells: Transduction of both Ca2+ and cyclic AMP signals. Journal of Clinical Immunology, 1996, 16, 21-30.	2.0	27
102	Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Letters, 1995, 375, 121-124.	1.3	28
103	Diverse Mechanisms of Specificity of Human Receptors for Eicosanoids. Annals of the New York Academy of Sciences, 1994, 744, 146-154.	1.8	5
104	Mediators of communication and adaptation in the neuroendocrine and immune systems. FASEB Journal, 1992, 6, 2646-2652.	0.2	108
105	Neuropeptides in pulmonary edema fluid of adult respiratory distress syndrome. Inflammation, 1992, 16, 509-517.	1.7	28
106	Ligand-induced formation of the leukotriene B4 receptor-G protein complex of human polymorphonuclear leukocytes. Journal of Cellular Biochemistry, 1992, 48, 367-372.	1,2	5
107	Relative quantification of collagen mrna in fibroblasts by a radioactive polymerase chain reaction technique. Journal of Clinical Laboratory Analysis, 1991, 5, 262-267.	0.9	2
108	Polymerase chain reaction amplification of messages for growth factors in cells from human bronchoalveolar lavage fluids. Inflammation, 1991, 15, 259-268.	1.7	10

#	Article	lF	CITATIONS
109	Leukotriene D4-induced increases in the cytoplasmic pH of human myelocytic leukocytes. Journal of Cellular Physiology, 1988, 136, 355-360.	2.0	4
110	Receptor-specific Mechanisms for the Responses of Human Leukocytes to Leukotrienes. Annals of the New York Academy of Sciences, 1988, 524, 345-355.	1.8	18
111	Neuropeptide Regulation of Immediate and Delayed Hypersensitivity. International Journal of Neuroscience, 1988, 38, 211-221.	0.8	17
112	Dual Roles of Substance P: Modulator of Immune and Neuroendocrine Functions. Annals of the New York Academy of Sciences, 1987, 512, 465-475.	1.8	44
113	Preferential human eosinophil chemotactic activity of the platelet-activating factor (PAF) 1-0-hexadecyl-2-acetyl-sn-glyceryl-3-phosphocholine (AGEPC). Journal of Clinical Immunology, 1987, 7, 179-184.	2.0	63
114	Immunological mediators of wound healing and fibrosis. Journal of Cellular Physiology, 1987, 133, 89-93.	2.0	35
115	Alterations in human leukocyte function induced by ingestion of eicosapentaenoic acid. Journal of Clinical Immunology, 1986, 6, 402-410.	2.0	154
116	Leukotriene C4Transport and Metabolism in the Central Nervous System. Journal of Neurochemistry, 1986, 46, 1308-1312.	2.1	14
117	A sensitive and specific radioimmunoassay for leukotriene C4. FEBS Letters, 1983, 152, 83-88.	1.3	45