
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2732336/publications.pdf Version: 2024-02-01

FEL VANC

#	Article	IF	CITATIONS
1	Polymeric Wax Inhibitors and Pour Point Depressants for Waxy Crude Oils: A Critical Review. Journal of Dispersion Science and Technology, 2015, 36, 213-225.	2.4	206
2	Pickering emulsions stabilized solely by layered double hydroxides particles: The effect of salt on emulsion formation and stability. Journal of Colloid and Interface Science, 2006, 302, 159-169.	9.4	187
3	Modified Maleic Anhydride Co-polymers as Pour-Point Depressants and Their Effects on Waxy Crude Oil Rheology. Energy & Fuels, 2012, 26, 995-1001.	5.1	134
4	Organically modified nano-clay facilitates pour point depressing activity of polyoctadecylacrylate. Fuel, 2016, 166, 96-105.	6.4	115
5	Hydrophilic Nanoparticles Facilitate Wax Inhibition. Energy & Fuels, 2015, 29, 1368-1374.	5.1	111
6	Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles. Journal of Colloid and Interface Science, 2007, 306, 285-295.	9.4	110
7	Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant. Fuel, 2016, 184, 544-554.	6.4	92
8	Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach. Journal of Materials Chemistry A, 2014, 2, 5662.	10.3	85
9	Ethylene–Vinyl Acetate Copolymer and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 1. Effect of Wax Content and the Synergistic Mechanism. Energy & Fuels, 2018, 32, 1567-1578.	5.1	66
10	Synergetic effect of resins and asphaltenes on water/oil interfacial properties and emulsion stability. Fuel, 2019, 252, 581-588.	6.4	62
11	Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosages of the polymethylsilsesquioxane (PMSQ) microsphere: An experimental study. Fuel, 2017, 207, 204-213.	6.4	59
12	Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosage of the amino-functionalized polymethylsilsesquioxane (PAMSQ) microsphere. Fuel, 2018, 220, 167-176.	6.4	53
13	Oil dispersible polymethylsilsesquioxane (PMSQ) microspheres improve the flow behavior of waxy crude oil through spacial hindrance effect. Fuel, 2017, 199, 4-13.	6.4	51
14	Polarity effects of asphaltene subfractions on the stability and interfacial properties of water-in-model oil emulsions. Fuel, 2020, 269, 117450.	6.4	51
15	Development of Asphaltenes-Triggered Two-Layer Waxy Oil Gel Deposit under Laminar Flow: An Experimental Study. Energy & Fuels, 2016, 30, 9922-9932.	5.1	45
16	Isothermal structure development of Qinghai waxy crude oil after static and dynamic cooling. Journal of Petroleum Science and Engineering, 2011, 77, 351-358.	4.2	38
17	Scaling of Structural Characteristics of Gelled Model Waxy Oils. Energy & Fuels, 2013, 27, 3718-3724.	5.1	38
18	Effect of asphaltenes on the stratification phenomenon of wax-oil gel deposits formed in a new cylindrical Couette device. Journal of Petroleum Science and Engineering, 2016, 140, 73-84.	4.2	36

#	Article	IF	CITATIONS
19	Studies on the Structural Characteristics of Gelled Waxy Crude Oils Based on Scaling Model. Energy & Fuels, 2013, 27, 1307-1313.	5.1	35
20	Effect of Vinyl-Acetate Moiety Molar Fraction on the Performance of Poly(Octadecyl Acrylate-Vinyl) Tj ETQq0 0 Fuels, 2017, 31, 448-457.	0 rgBT /Ove 5.1	erlock 10 Tf 50 34
21	Ethylene–Vinyl Acetate Copolymer and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 2. Effect of Asphaltene Content. Energy & Fuels, 2018, 32, 5834-5845.	5.1	32
22	Effect of Thermal Treatment Temperature on the Flowability and Wax Deposition Characteristics of Changqing Waxy Crude Oil. Energy & Fuels, 2018, 32, 10605-10615.	5.1	32
23	Ethylene-Vinyl Acetate Copolymer (EVA) and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 3. Effect of Vinyl Acetate Content. Energy & Fuels, 2018, 32, 8374-8382.	5.1	32
24	Effect of dodecyl benzene sulfonic acid (DBSA) and lauric amine (LA) on the associating state and rheology of heavy oils. Journal of Petroleum Science and Engineering, 2014, 124, 19-26.	4.2	29
25	Polar asphaltenes facilitate the flow improving performance of polyethylene-vinyl acetate. Fuel Processing Technology, 2020, 207, 106481.	7.2	29
26	Effect of Asphaltene Polarity on Wax Precipitation and Deposition Characteristics of Waxy Oils. Energy & Fuels, 2019, 33, 7225-7233.	5.1	28
27	Investigation on the mechanism of wax deposition inhibition induced by asphaltenes and wax inhibitors. Journal of Petroleum Science and Engineering, 2021, 204, 108723.	4.2	28
28	Comb-like Polyoctadecyl Acrylate (POA) Wax Inhibitor Triggers the Formation of Heterogeneous Waxy Oil Gel Deposits in a Cylindrical Couette Device. Energy & Fuels, 2018, 32, 373-383.	5.1	27
29	Synergistic effect of asphaltenes and octadecyl acrylate-maleic anhydride copolymers modified by aromatic pendants on the flow behavior of model waxy oils. Fuel, 2020, 260, 116381.	6.4	27
30	Influences of different functional groups on the performance of polyoctadecyl acrylate pour point depressant. Petroleum Science and Technology, 2016, 34, 1712-1719.	1.5	24
31	Influence of the Aggregation State of Asphaltenes on Structural Properties of the Model Oil/Brine Interface. Energy & Fuels, 2019, 33, 2994-3002.	5.1	24
32	Experimental Investigation on the Gelation Process and Gel Structure of Water-in-Waxy Crude Oil Emulsion. Energy & Fuels, 2017, 31, 271-278.	5.1	22
33	Synthesis and evaluation of an environmentâ€friendly terpolymer CaCO ₃ scale inhibitor for oilfield produced water with better salt and temperature resistance. Journal of Applied Polymer Science, 2020, 137, 48460.	2.6	22
34	Co-adsorption behavior of asphaltenes and carboxylic acids with different alkyl chain lengths and its effects on the stability of water/model oil emulsion. Fuel, 2021, 295, 120603.	6.4	21
35	The formation and aggregation of hydrate in W/O emulsion containing different compositions: A review. Chemical Engineering Journal, 2022, 445, 136800.	12.7	21
36	Effects of Dissolved CO2 on the Crude Oil/Water Interfacial Viscoelasticity and the Macroscopic Stability of Water-in-Crude Oil Emulsion. Energy & Fuels, 2018, 32, 9330-9339.	5.1	20

#	Article	IF	CITATIONS
37	Modification effect of macroporous comb-like polymeric pour point depressants on the flow behavior of model waxy oils. Fuel, 2022, 314, 123113.	6.4	18
38	Morphology-controlled synthesis of polymethylsilsesquioxane (PMSQ) microsphere and its applications in enhancing the thermal properties and flow improving ability of ethylene-vinyl acetate copolymer. Powder Technology, 2018, 329, 137-148.	4.2	16
39	Impact of the Composition and Content of Dissolved-State Paraffins in Model Oil on the Aggregation State of Asphaltenes and the Stability of Water-in-Model Oil Emulsion. Energy & Fuels, 2019, 33, 12191-12201.	5.1	16
40	Effect of doped emulsifiers on the morphology of precipitated wax crystals and the gel structure of water-in-model-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125434.	4.7	16
41	Effect of the Interactions between Asphaltenes and Amphiphilic Dodecylbenzenesulfonic Acid on the Stability and Interfacial Properties of Model Oil Emulsions. Energy & Fuels, 2020, 34, 6951-6961.	5.1	14
42	Effect of oil dispersible polymethylsilsesquioxane microspheres on the formation and breakage of model waxy oil gels. Fuel, 2017, 209, 424-433.	6.4	13
43	Experimental Investigation of the Rheological Properties of a Typical Waxy Crude Oil Treated with Supercritical CO ₂ and the Stability Change in Its Emulsion. Energy & Fuels, 2019, 33, 4731-4739.	5.1	12
44	Characterization of the Precipitation Modes of Paraffin Wax in Water-in-Model-Oil Emulsions. Energy & Fuels, 2020, 34, 16014-16022.	5.1	12
45	Adsorption behavior and interfacial dilational properties of asphaltenes at the interface between <i>n</i> -decane/ <i>α</i> -methylnaphthalene and brine water. Journal of Dispersion Science and Technology, 2020, 41, 918-928.	2.4	10
46	Effect of Ethylene-Vinyl Acetate Copolymer/Amino-Functionalized Polymethylsilsesquioxane Composite Wax Inhibitor on the Rheological and Wax Depositing Characteristics of Waxy Crude Oil. Energy & Fuels, 2020, 34, 8120-8128.	5.1	10
47	Polyoctadecylacrylate (POA) and resin-stabilized asphaltene synergistically improve the flow behavior of model waxy oils. Petroleum Science and Technology, 2018, 36, 531-539.	1.5	9
48	lsothermal Crystallization Properties and Improved Rheological Performance of Waxy Crude Oil using Polyoctadecylacrylate-Modified Montmorillonite Composite as a Pour Point Depressant. Clays and Clay Minerals, 2018, 66, 233-244.	1.3	9
49	Effect of Polyethylene-Vinyl Acetate Pour Point Depressants on the Flow Behavior of Degassed Changqing Waxy Crude Oil before/after scCO ₂ Extraction. Energy & Fuels, 2019, 33, 4931-4938.	5.1	9
50	Poly(aminopropyl/methyl)silsesquioxane microspheres improve the flowability of model waxy oils associated with asphaltenes. Fuel, 2019, 243, 60-69.	6.4	9
51	Effects of Asphaltene Concentration and Test Temperature on the Stability of Water-in-Model Waxy Crude Oil Emulsions. ACS Omega, 2022, 7, 8023-8035.	3.5	9
52	Performance improvement of Ethyleneâ^'Vinyl Acetate Copolymer Pour Point Depressant (EVA PPD) by adding small dosages of Laurylamine (LA). Petroleum Science, 2022, 19, 2472-2482.	4.9	9
53	Effective flow improving agents for waxy crude oil. Petroleum Science and Technology, 2017, 35, 1775-1783.	1.5	8
54	Co-adsorption behavior of aggregated asphaltenes and silica nanoparticles at oil/water interface and its effect on emulsion stability. Petroleum Science, 2022, 19, 1793-1802.	4.9	8

#	Article	IF	CITATIONS
55	Experimental Investigation on the Interactions between Asphaltenes and Comb-like Octadecyl Acrylate (OA) Polymeric Flow Improvers at the Model Oil/Water Interface. Energy & Fuels, 2020, 34, 2693-2702.	5.1	7
56	Multi-alkylated aromatic amides amphiphiles effectively stabilize the associated asphaltene particles in crude oil. Journal of Petroleum Science and Engineering, 2022, 212, 110204.	4.2	7
57	Effects of Supercritical CO ₂ Treatment on the Stability of Water-in-Heavy-Oil Emulsion and Their Mechanisms. Energy & Fuels, 2018, 32, 1358-1364.	5.1	5
58	Effect of dispersing time on the prediction equation of drag reduction rate and its application in the short distance oil pipeline. Petroleum Science and Technology, 2018, 36, 1312-1318.	1.5	5
59	A novel heterogeneous wax deposit structure triggered by polyethylene vinyl acetate (EVA) wax inhibitors. Journal of Dispersion Science and Technology, 2020, 41, 2002-2013.	2.4	5
60	Experimental investigation on the interactions of asphaltenes and ethylene–vinyl acetate (EVA) copolymeric flow improvers at the interface between brine water and model oil. Fuel, 2020, 262, 116530.	6.4	5
61	Study on the Interactive Effects of Solid Particles and Asphaltenes on the Interfacial Structure and Stability of a Water-in-Model Oil Emulsion. Langmuir, 2021, 37, 10827-10837.	3.5	5
62	An experimental design approach for investigating and modeling wax deposition based on a new cylindrical Couette apparatus. Petroleum Science and Technology, 2016, 34, 570-577.	1.5	4
63	Experimental Study on the Effective Viscosity of Unstable CO ₂ Flooding Produced Fluid with the Energy Dissipation Method. Industrial & Engineering Chemistry Research, 2020, 59, 1308-1318.	3.7	3
64	Prediction of Wax Deposits for Crude Pipelines Using Time-Dependent Data Mining. SPE Journal, 2021, , 1-22.	3.1	3
65	Effect of drag reducer and pour point depressant on the wax deposition of crude oil pipeline. Petroleum Science and Technology, 2017, 35, 1277-1284.	1.5	2