Shino Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2732290/publications.pdf

Version: 2024-02-01

361413 377865 1,148 41 20 34 citations h-index g-index papers 43 43 43 1389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intratracheal Administration of Activated Protein C Inhibits Bleomycin-induced Lung Fibrosis in the Mouse. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1660-1668.	5.6	143
2	<i>In Vivo</i> and <i>In Vitro</i> Effects of Macrolide Antibiotics on Mucus Secretion in Airway Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 581-587.	5 . 6	142
3	Thrombin stimulates the expression of PDGF in lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L503-L510.	2.9	81
4	Activated Protein C Inhibits the Expression of Platelet-derived Growth Factor in the Lung. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1416-1426.	5 . 6	81
5	Role of Thrombin in Chronic Rhinosinusitis–associated Tissue Remodeling. American Journal of Rhinology and Allergy, 2011, 25, 7-11.	2.0	55
6	Endogenous Protease Inhibitors in Airway Epithelial Cells Contribute to Eosinophilic Chronic Rhinosinusitis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 737-747.	5 . 6	49
7	A mechanism of antigen-induced goblet cell degranulation in the nasal epithelium of sensitized rats. Journal of Allergy and Clinical Immunology, 2003, 112, 119-125.	2.9	45
8	Eosinophil–Epithelial Cell Interactions Stimulate the Production of MUC5AC Mucin and Profibrotic Cytokines Involved in Airway Tissue Remodeling. American Journal of Rhinology and Allergy, 2014, 28, 103-109.	2.0	44
9	Role of the coagulation system in allergic inflammation in the upper airways. Clinical Immunology, 2008, 129, 365-371.	3.2	42
10	Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis. Clinical Immunology, 2016, 170, 1-8.	3.2	41
11	Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D ₂ and cysteinyl leukotrienes in allergic rhinitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2417-2426.	5.7	41
12	Tissue Factor and Tissue Factor Pathway Inhibitor in Nasal Mucosa and Nasal Secretions of Chronic Rhinosinusitis with Nasal Polyp. American Journal of Rhinology and Allergy, 2015, 29, 235-242.	2.0	35
13	HMGB1-TLR4 Signaling Contributes to the Secretion of Interleukin 6 and Interleukin 8 by Nasal Epithelial Cells. American Journal of Rhinology and Allergy, 2016, 30, 167-172.	2.0	34
14	Epithelial Cell-Derived Cytokines Contribute to the Pathophysiology of Eosinophilic Chronic Rhinosinusitis. Journal of Interferon and Cytokine Research, 2016, 36, 169-179.	1.2	31
15	Azithromycin Inhibits Mucus Hypersecretion from Airway Epithelial Cells. Mediators of Inflammation, 2012, 2012, 1-6.	3.0	27
16	Epidermal Growth Factor Receptor Inhibitor Ag1478 Inhibits Mucus Hypersecretion in Airway Epithelium. American Journal of Rhinology and Allergy, 2016, 30, e1-e6.	2.0	25
17	Differential Properties of Mucous Glycoproteins in Rat Nasal Epithelium. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1077-1082.	5 . 6	24
18	Valproic Acid Promotes Neural Regeneration of Olfactory Epithelium in Adult Mice after Methimazole-Induced Damage. American Journal of Rhinology and Allergy, 2014, 28, e95-e99.	2.0	23

#	Article	IF	CITATIONS
19	Thrombin and Activated Coagulation Factor X Stimulate the Release of Cytokines and Fibronectin from Nasal Polyp Fibroblasts <i>via</i> Protease-Activated Receptors. American Journal of Rhinology and Allergy, 2017, 31, e13-e18.	2.0	21
20	Heparin Inhibits Mucus Hypersecretion in Airway Epithelial Cells. American Journal of Rhinology and Allergy, 2011, 25, 69-74.	2.0	20
21	Anti-inflammatory effects of a novel non-antibiotic macrolide, EM900, on mucus secretion of airway epithelium. Auris Nasus Larynx, 2015, 42, 332-336.	1.2	20
22	EP4 Agonist Inhibits Lipopolysaccharide-Induced Mucus Secretion in Airway Epithelial Cells. Annals of Otology, Rhinology and Laryngology, 2008, 117, 51-58.	1.1	16
23	The epidermal growth factor receptor inhibitor AG1478 inhibits eosinophilic inflammation in upper airways. Clinical Immunology, 2018, 188, 1-6.	3.2	15
24	Pro-Resolution Mediator Lipoxin A4 and its Receptor in Upper Airway Inflammation. Annals of Otology, Rhinology and Laryngology, 2013, 122, 683-689.	1.1	13
25	Development of a High-Sensitivity Method for the Measurement of Human Nasal AÎ ² 42, Tau, and Phosphorylated Tau. Journal of Alzheimer's Disease, 2018, 62, 737-744.	2.6	13
26	Th2 Cytokine Inhibitor Suplatast Tosilate Inhibits Antigen-Induced Mucus Hypersecretion in the Nasal Epithelium of Sensitized Rats. Annals of Otology, Rhinology and Laryngology, 2009, 118, 67-72.	1.1	11
27	The Effect of Heparin on Antigen-Induced Mucus Hypersecretion in the Nasal Epithelium of Sensitized Rats. Allergology International, 2013, 62, 77-83.	3.3	11
28	17,18-Epoxyeicosatetraenoic Acid Inhibits TNF-α-Induced Inflammation in Cultured Human Airway Epithelium and LPS-Induced Murine Airway Inflammation. American Journal of Rhinology and Allergy, 2022, 36, 106-114.	2.0	9
29	Immunological effects of sublingual immunotherapy with Japanese cedar pollen extract in patients with combined Japanese cedar and Japanese cypress pollinosis. Clinical Immunology, 2020, 210, 108310.	3.2	8
30	Soluble ST2 suppresses IL-5 production by human basophilic KU812 cells, induced by epithelial cell-derived IL-33. Allergology International, 2018, 67, S32-S37.	3.3	6
31	A mechanism of interleukin-25 production from airway epithelial cells induced by Japanese cedar pollen. Clinical Immunology, 2018, 193, 46-51.	3.2	6
32	Nasal polyp fibroblasts (NPFs)-derived exosomes are important for the release of vascular endothelial growth factor from cocultured eosinophils and NPFs. Auris Nasus Larynx, 2021, , .	1.2	5
33	Anti-inflammatory roles of interleukin-35 in the pathogenesis of Japanese cedar pollinosis. Asia Pacific Allergy, 2021, 11, e34.	1.3	4
34	Differential Properties of Mucous Glycoproteins Produced by Allergic Inflammation and Lipopolysaccharide Stimulation in Rat Nasal Epithelium. Advances in Oto-Rhino-Laryngology, 2011, 72, 107-109.	1.6	3
35	A Histochemical Analysis of Neurofibrillary Tangles in Olfactory Epithelium, a Study Based on an Autopsy Case of Juvenile Alzheimer's Disease. Acta Histochemica Et Cytochemica, 2022, 55, 93-98.	1.6	2
36	Role of Coagulation System in Inflammatory Responses of the Airways. Nihon Bika Gakkai Kaishi (Japanese Journal of Rhinology), 2010, 49, 1-7.	0.0	1

#	Article	IF	CITATIONS
37	The inhibitory effects of heparin on the upper airway inflammation. Journal of Japan Society of Immunology & Allergology in Otolaryngology, 2011, 29, 221-227.	0.0	1
38	Local administration of epidermal growth factor receptor tyrosine kinase inhibitor may provide a new therapeutic potential for the treatment of intractable upper airway inflammation. Journal of Japan Society of Immunology & Allergology in Otolaryngology, 2016, 34, 1-7.	0.0	0
39	Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis. Nihon Bika Gakkai Kaishi (Japanese Journal of Rhinology), 2017, 56, 76-76.	0.0	O
40	Role of the Coagulation System in Mucin Production of Sinonasal Inflammation. Nihon Bika Gakkai Kaishi (Japanese Journal of Rhinology), 2010, 49, 85-87.	0.0	0
41	A case of superior canal dehiscence syndrome. Equilibrium Research, 2020, 79, 524-534.	0.1	0