Pedro Giovâni da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2731369/publications.pdf

Version: 2024-02-01

516710 395702 1,295 59 16 citations h-index papers

g-index 61 61 61 2149 docs citations times ranked citing authors all docs

33

#	Article	IF	CITATIONS
1	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1 1	0.784314	rgBT /Ov <mark>er</mark> i
2	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
3	Spatial Patterns of Movement of Dung Beetle Species in a Tropical Forest Suggest a New Trap Spacing for Dung Beetle Biodiversity Studies. PLoS ONE, 2015, 10, e0126112.	2.5	116
4	Local and Regional Effects on Community Structure of Dung Beetles in a Mainland-Island Scenario. PLoS ONE, 2014, 9, e111883.	2.5	67
5	Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Diversity and Distributions, 2018, 24, 1277-1290.	4.1	62
6	Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages. Diversity and Distributions, 2018, 24, 1674-1686.	4.1	60
7	Coâ€declining mammal–dung beetle faunas throughout the Atlantic Forest biome of South America. Ecography, 2019, 42, 1803-1818.	4.5	54
8	Diversity and seasonality of Scarabaeinae (Coleoptera: Scarabaeidae) in forest fragments in Santa Maria, Rio Grande do Sul, Brazil. Anais Da Academia Brasileira De Ciencias, 2013, 85, 679-697.	0.8	42
9	Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches. PLoS ONE, 2015, 10, e0123030.	2.5	39
10	Patch and landscape effects on forest-dependent dung beetles are masked by matrix-tolerant dung beetles in a mountaintop rainforest archipelago. Science of the Total Environment, 2019, 651, 1321-1331.	8.0	37
11	Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest. Revista Brasileira De Entomologia, 2016, 60, 73-81.	0.4	35
12	Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecology and Conservation, 2020, 18, 213-222.	1.9	34
13	Environmental drivers of taxonomic and functional diversity of ant communities in a tropical mountain. Insect Conservation and Diversity, 2020, 13, 393-403.	3.0	32
14	Scarabaeinae (Coleoptera, Scarabaeidae) de um bosque de eucalipto introduzido em uma região originalmente campestre. Iheringia - Serie Zoologia, 2011, 101, 121-126.	0.5	25
15	Guia de identificação das espécies de Scarabaeinae (Coleoptera: Scarabaeidae) do municÃpio de Santa Maria, Rio Grande do Sul, Brasil. Biota Neotropica, 2011, 11, 329-345.	1.0	21
16	EscarabeÃneos (Coleoptera: Scarabaeidae: Scarabaeinae) de uma área de campo nativo no bioma Pampa, Rio Grande do Sul, Brasil. Biota Neotropica, 2012, 12, 246-253.	1.0	19
17	EscarabeÃneos copro-necrófagos (Coleoptera, Scarabaeidae, Scarabaeinae) de fragmentos de Mata Atlântica em Silveira Martins, Rio Grande do Sul, Brasil. Iheringia - Serie Zoologia, 2012, 102, 197-205.	0.5	19
18	Habitat generalists drive nestedness in a tropical mountaintop insect metacommunity. Biological Journal of the Linnean Society, 2021, 133, 577-586.	1.6	16

#	Article	IF	Citations
19	Fire? They don't give a dung! The resilience of dung beetles to fire in a tropical savanna. Ecological Entomology, 2019, 44, 315-323.	2.2	14
20	Can taxonomic and functional metrics explain variation in the ecological uniqueness of ecologically-associated animal groups in a modified rainforest?. Science of the Total Environment, 2020, 708, 135171.	8.0	13
21	Unveiling patterns of taxonomic and functional diversities of stream insects across four spatial scales in the neotropical savanna. Ecological Indicators, 2020, 118, 106769.	6.3	13
22	Climatic variables drive temporal patterns of \hat{l}_{\pm} and \hat{l}_{\pm}^2 diversities of dung beetles. Bulletin of Entomological Research, 2019, 109, 390-397.	1.0	11
23	Forest regeneration affects dung beetle assemblages (Coleoptera: Scarabaeinae) in the southern Brazilian Atlantic Forest. Journal of Insect Conservation, 2016, 20, 855-866.	1.4	10
24	Local and regional effects structuring aquatic insect assemblages at multiple spatial scales in a Mainland-Island region of the Atlantic Forest. Hydrobiologia, 2018, 805, 61-73.	2.0	10
25	Variation in dung removal by dung beetles in subtropical Atlantic Rainforests. Entomologia Experimentalis Et Applicata, 2018, 166, 854-862.	1.4	10
26	Rainfall seasonality drives the spatiotemporal patterns of dung beetles in Amazonian forests in the arc of deforestation. Journal of Insect Conservation, 2021, 25, 453-463.	1.4	10
27	Landscape effects on taxonomic and functional diversity of dung beetle assemblages in a highly fragmented tropical forest. Forest Ecology and Management, 2021, 496, 119390.	3.2	10
28	Soil type, vegetation cover and temperature determinants of the diversity and structure of dung beetle assemblages in a South African open woodland and closed canopy mosaic. Austral Ecology, 2022, 47, 79-91.	1.5	9
29	Dung Beetles (Coleoptera: Scarabaeidae: Scarabaeinae) Attracted to Rotten Eggs in the Atlantic Forest in Subtropical Southern Brazil. The Coleopterists Bulletin, 2014, 68, 339.	0.2	8
30	Ecological Characteristics of Atlantic Forest Dung Beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in the State of Santa Catarina, Southern Brazil. The Coleopterists Bulletin, 2019, 73, 693.	0.2	8
31	Dung beetle communities in coal mining areas in the process of recovery. Biotemas, 2014, 27, 197.	0.1	7
32	Distribution of Canthon rutilans rutilans and Canthon rutilans cyanescens Along Spatio-Temporal and Temperature Gradients. Insects, 2018, 9, 124.	2.2	7
33	Dung beetle responses to successional stages in the Amazon rainforest. Biodiversity and Conservation, 2019, 28, 2745-2761.	2.6	7
34	The role of habitat and daily activity patterns in explaining the diversity of mountain Neotropical dung beetle assemblages. Austral Ecology, 2019, 44, 300-312.	1.5	7
35	Estrutura e organização de assembleias de Scarabaeinae (Coleoptera, Scarabaeidae) em diferentes fitofisionomias no sul do Brasil. lheringia - Serie Zoologia, 2015, 105, 393-402.	0.5	6
36	Environmental drivers of species composition and functional diversity of dung beetles along the Atlantic Forest–Pampa transition zone. Austral Ecology, 2019, 44, 786-799.	1.5	6

#	Article	IF	Citations
37	Residential sites increase species loss and cause high temporal changes in functional diversity of dung beetles in an urbanized Brazilian Cerrado landscape. Journal of Insect Conservation, 2021, 25, 417-428.	1.4	6
38	Dung beetles (Coleoptera, Scarabaeinae) from high-altitude grasslands in São Joaquim National Park, Santa Catarina, southern Brazil. Check List, 2017, 13, 817-830.	0.4	6
39	Dung beetles can sow: the potential of secondary seedÂdispersers to assist ecological restoration. Ecological Entomology, 2022, 47, 181-191.	2.2	6
40	Dung beetles maintain phylogenetic divergence but functional convergence across a highly fragmented tropical landscape. Journal of Applied Ecology, 2022, 59, 1781-1791.	4.0	6
41	EscarabeÃdeos (Coleoptera: Scarabaeidae) de campo e floresta da Reserva Biológica de São Donato, Rio Grande do Sul, Brasil. Biotemas, 2014, 27, 63.	0.1	5
42	Spatial but not temporal dung beetle <i>β</i> à€diversity components are scaleâ€dependent in a mainland–island scenario. Austral Ecology, 2018, 43, 915-925.	1.5	5
43	Exploring the predictive performance of several temperature measurements on Neotropical dung beetle assemblages: Methodological implications. Entomological Science, 2019, 22, 56-63.	0.6	5
44	Exotic pastureland is better than Eucalyptus monoculture: β-diversity responses of flower chafer beetles to Brazilian Atlantic Forest conversion. International Journal of Tropical Insect Science, 2021, 41, 137-144.	1.0	5
45	Spatiotemporal patterns of taxonomic and functional $\hat{l}^2 \hat{e} \in diversity$ of dung beetles in native and introduced pastures in the Brazilian Pantanal. Austral Ecology, 2021, 46, 98-110.	1.5	5
46	Environmental drivers of taxonomic and functional diversity of dung beetles across a chronosequence of tropical grasslands with different cattle grazing removal ages. Austral Ecology, 2022, 47, 928-938.	1.5	5
47	Editorial: Spatio-Temporal Dynamics of Metacommunities - Implications for Conservation and Management. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
48	Spatiotemporal Patterns of Ant Metacommunity in a Montane Forest Archipelago. Neotropical Entomology, 2021, 50, 886-898.	1.2	4
49	Crescimento de nogueira-pec \tilde{A} £ sob diferentes preparos do solo e coveamentos: cole \tilde{A} 3pteros como bioindicadores. Pesquisa Florestal Brasileira, 2017, 37, 587-596.	0.1	4
50	Forest complexity drives dung beetle assemblages along an edgeâ€interior gradient in the southwest Amazon rainforest. Ecological Entomology, 2020, 45, 259-268.	2.2	3
51	Dung beetle βâ€diversity across Brazilian tropical dry forests does not support the Pleistocene Arc hypothesis. Austral Ecology, 2022, 47, 54-67.	1.5	3
52	Seasonality of dung beetles (Coleoptera: Scarabaeinae) in Atlantic Forest sites with different levels of disturbance in southern Brazil. Iheringia - Serie Zoologia, 0, 109, .	0.5	3
53	Spatiotemporal patterns of \hat{l}^2 -diversity of flower chafer beetles in urban park and natural reserve sites in Brazilian Cerrado. International Journal of Tropical Insect Science, 2021, 41, 681-691.	1.0	2
54	Spatial and landâ€use determinants of bat species richness, functional diversity, and site uniqueness throughout the largest Tropical country, Brazil. Mammal Review, 2022, 52, 267-283.	4.8	2

#	Article	lF	CITATIONS
55	First record of Scybalocanthon nigriceps (Harold, 1868) (Coleoptera: Scarabaeidae: Scarabaeinae) in Rio Grande do Sul state, southern Brazil. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1635-1640.	0.8	1
56	Insideâ€container effects drive mosquito community structure in Brazilian Atlantic forest. Entomologia Experimentalis Et Applicata, 2019, 167, 566-576.	1.4	1
57	Diversity and seasonality of Scarabaeinae (Coleoptera: Scarabaeidae) in forest fragments in Santa Maria, Rio Grande do Sul, Brazil. Anais Da Academia Brasileira De Ciencias, 2013, , 00-00.	0.8	1
58	Cerambycid Beetle Communities in Caatinga Dry Forests Are Structured by Seasonal Species Turnover. Neotropical Entomology, 2022, 51, 368-375.	1.2	1
59	Annotated Checklist of Aphodiinae (Coleoptera: Scarabaeidae) from Rio Grande do Sul and Santa Catarina, Brazil. EntomoBrasilis, 2015, 8, 145-151.	0.2	0