
Thomas Lebzelter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2731281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A1.	5.1	6,364
2	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A10.	5.1	638
3	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A12.	5.1	491
4	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A11.	5.1	323
5	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A14.	5.1	140
6	Random forest automated supervised classification of Hipparcos periodic variable stars. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2602-2617.	4.4	134
7	Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5666-5692.	4.4	122
8	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 618, A30.	5.1	117
9	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2019, 623, A110.	5.1	101
10	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A13.	5.1	78
11	Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3283-3301.	4.4	75
12	Constraining the structure and formation of the Galactic bulge from a field in its outskirts. Astronomy and Astrophysics, 2012, 546, A57.	5.1	67
13	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 618, A58.	5.1	66
14	Infrared Spectroscopy of Symbiotic Stars. IV. V2116 Ophiuchi/GX 1+4, The Neutron Star Symbiotic. Astrophysical Journal, 2006, 641, 479-487.	4.5	63
15	Long period variables in 47 Tuc: direct evidence for lost mass. Astronomy and Astrophysics, 2005, 441, 1117-1127.	5.1	59
16	Velocity Observations of Multiple-Mode Asymptotic Giant Branch Variable Stars. Astronomical Journal, 2002, 123, 1002-1012.	4.7	53
17	Lithium abundances along the red giant branch: FLAMES-GIRAFFE spectra of a large sample of low-mass bulge stars. Astronomy and Astrophysics, 2012, 538, A36.	5.1	45
18	A new method to identify subclasses among AGB stars using <i>Gaia</i> and 2MASS photometry. Astronomy and Astrophysics, 2018, 616, L13.	5.1	45

#	Article	IF	CITATIONS
19	The pulsation of AGB stars in the Magellanic Cloud clusters NGC 1978 and 419. Monthly Notices of the Royal Astronomical Society, 0, 408, 522-534.	4.4	44
20	Infrared Velocities of Long Period Variables: CO delta(upsilon)=3 in Four Miras and Five SR Variables. Astronomical Journal, 1997, 114, 2686.	4.7	44
21	Comparative modelling of the spectra of cool giants. Astronomy and Astrophysics, 2012, 547, A108.	5.1	39
22	CARBON AND OXYGEN ISOTOPIC RATIOS FOR NEARBY MIRAS. Astrophysical Journal, 2016, 825, 38.	4.5	37
23	AGB stars of the intermediate-age LMC cluster NGC 1846. Astronomy and Astrophysics, 2008, 486, 511-521.	5.1	36
24	Automated classification of Hipparcos unsolved variables. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2917-2937.	4.4	36
25	Technetium and the third dredge up in AGB stars. Astronomy and Astrophysics, 2007, 463, 251-259.	5.1	36
26	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2019, 625, A97.	5.1	35
27	Velocity variability of semiregular and irregular variables. Astronomy and Astrophysics, 2002, 393, 563-571.	5.1	33
28	Atmospheric dynamics in carbon-rich Miras. Astronomy and Astrophysics, 2005, 437, 285-296.	5.1	33
29	Multi-colour light variation of AGB stars observed with ISO. Astronomy and Astrophysics, 2001, 375, 527-538.	5.1	33
30	A study of bright Southern long period variables. Astronomy and Astrophysics, 2005, 431, 623-634.	5.1	28
31	Hipparcos red stars in the HpVT2 and \$V!I_{m C}\$ systems. Astronomy and Astrophysics, 2003, 397, 997-1010.	5.1	26
32	The AGB stars of the intermediate-age LMC cluster NGC 1846. Astronomy and Astrophysics, 2007, 475, 643-650.	5.1	26
33	CRIRES-POP. Astronomy and Astrophysics, 2012, 539, A109.	5.1	25
34	AGAPEROS: Searching for variable stars in the LMC Bar. Astronomy and Astrophysics, 2002, 393, 573-583.	5.1	24
35	Technetium and the third dredge up in AGB stars. Astronomy and Astrophysics, 2003, 411, 533-542.	5.1	23
36	Bolometric corrections for cool giants based on near-infrared photometry. Astronomy and Astrophysics, 2010, 524, A87.	5.1	23

#	Article	IF	CITATIONS
37	Low-mass lithium-rich AGBÂstars in the Galactic bulge: evidence for cool bottom processing?. Astronomy and Astrophysics, 2007, 471, L41-L45.	5.1	22
38	Long period variables in the globular cluster 47 Tuc: Radial velocity variations. Astronomy and Astrophysics, 2005, 432, 207-217.	5.1	21
39	The Fluorine Abundance in a Galactic Bulge AGB Star Measured from CRIRES Spectra. Astrophysical Journal, 2008, 682, 509-514.	4.5	20
40	Modelling long-period variables – II. Fundamental mode pulsation in the non-linear regime. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1575-1591.	4.4	20
41	Standard candles from the Gaia perspective. Astrophysics and Space Science, 2012, 341, 207-214.	1.4	19
42	Oxygen isotopic ratios in intermediate-mass red giants. Astronomy and Astrophysics, 2015, 578, A33.	5.1	19
43	The puzzling dredge-up pattern in NGC 1978. Astronomy and Astrophysics, 2009, 502, 913-927.	5.1	18
44	Imaging ejecta from the final flash star V605 Aquilae. Astronomy and Astrophysics, 2008, 479, 817-826.	5.1	17
45	Long-period variables in NGCâ \in ‰147 and NGCâ \in ‰185. Astronomy and Astrophysics, 2011, 532, A78.	5.1	17
46	Abundance analysis for long-period variables. Astronomy and Astrophysics, 2014, 567, A143.	5.1	17
47	Infrared Spectroscopy of Symbiotic Stars. V. First Orbits for Three S-Type Systems: Henize 2-173, CL Scorpii, and AS 270. Astronomical Journal, 2007, 133, 17-25.	4.7	16
48	Infrared Spectroscopy of Symbiotic Stars. XII. The Neutron Star SyXB System 4U 1700+24Â=ÂV934 Herculis. Astrophysical Journal, 2019, 872, 43.	4.5	16
49	Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1750-1769.	4.4	15
50	Period-luminosity diagram of long period variables in the Magellanic Clouds. Astronomy and Astrophysics, 2019, 631, A24.	5.1	15
51	Correlation between technetium and lithium in a sample ofÂoxygen-rich AGBÂvariables. Astronomy and Astrophysics, 2010, 510, A62.	5.1	15
52	The M Supergiant High-mass X-Ray Binary 4U 1954+31. Astrophysical Journal, 2020, 904, 143.	4.5	14
53	4 \$mathsf{mu}\$m spectra of AGB stars I. Observations. Astronomy and Astrophysics, 2001, 377, 617-630.	5.1	12
54	Determination of the stellar parameters of C-rich hydrostatic stars from spectro-interferometric observations. Astronomy and Astrophysics, 2011, 533, A27.	5.1	12

#	Article	IF	CITATIONS
55	Long period variables and mass loss in the globular clusters NGCÂ362 and NGCÂ2808. Astronomy and Astrophysics, 2011, 529, A137.	5.1	11
56	Monitoring of LPVs with an automatic telescope Astronomy and Astrophysics, 2001, 380, 388-396.	5.1	11
57	Abundance analysis for long period variables. Astronomy and Astrophysics, 2010, 517, A6.	5.1	10
58	The shapes of light curves of Miraâ€ŧype variables. Astronomische Nachrichten, 2011, 332, 140-146.	1.2	10
59	<i>KEPLER</i> AND THE LONG-PERIOD VARIABLES. Astronomical Journal, 2014, 148, 123.	4.7	9
60	Carbon and Oxygen Isotopic Ratios. II. Semiregular Variable M Giants. Astrophysical Journal, 2019, 886, 117.	4.5	9
61	The long-period variables inï‰Centauri. Astronomy and Astrophysics, 2016, 585, A111.	5.1	8
62	CRIRES-POP: a library of high resolution spectra in the near-infrared. Astronomy and Astrophysics, 2017, 598, A79.	5.1	8
63	Semi-regular red giants as distance indicators. Astronomy and Astrophysics, 2021, 656, A66.	5.1	8
64	How semiregular are irregular variables?. Astronomische Nachrichten, 2009, 330, 390-397.	1.2	7
65	Long-period variables in the CoRoT fields. Astronomy and Astrophysics, 2011, 530, A35.	5.1	6
66	A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables. Astrophysical Journal, 2017, 843, 51.	4.5	6
67	Technetium and lithium in Galactic bulge AGB stars. Astronomy and Astrophysics, 2008, 478, 527-527.	5.1	5
68	The complex environment of the bright carbon star TX Piscium as probed by spectro-astrometry. Astronomy and Astrophysics, 2015, 584, A27.	5.1	5
69	Two barium stars in the Galactic bulge. Astronomy and Astrophysics, 2013, 554, A30.	5.1	5
70	Fitting of dust spectra with genetic algorithms. Astronomy and Astrophysics, 2010, 516, A45.	5.1	4
71	LX Cygni: A carbon star is born. Astronomy and Astrophysics, 2016, 585, A145.	5.1	4
72	A Search for Long-Period Variables in Globular Clusters: M22 and IC4499. Publications of the Astronomical Society of Australia, 2014, 31, .	3.4	3

#	Article	IF	CITATIONS
73	Elemental abundances in AGB stars and the formation of the Galactic bulge. EPJ Web of Conferences, 2012, 19, 06009.	0.3	2
74	WZÂCas – variability on multiple time-scales. Astronomy and Astrophysics, 2005, 440, 295-303.	5.1	2
75	Phase closure image reconstruction for future VLTI instrumentation. , 2008, , .		1
76	Gaia spectroscopy overview and comparative spectrum modeling for cool giants. Journal of Physics: Conference Series, 2011, 328, 012001.	0.4	1
77	Carbon and oxygen isotopes in AGB stars. From the cores of AGB stars to presolar dust. Proceedings of the International Astronomical Union, 2018, 14, 447-448.	0.0	1
78	AGB stars in Gaia DR2. Proceedings of the International Astronomical Union, 2018, 14, 73-76.	0.0	1
79	The MOLspheres of Mira Variables. EAS Publications Series, 2015, 71-72, 249-250.	0.3	1
80	Periodic and Nonperiodic Phenomena in AGB Stars. International Astronomical Union Colloquium, 2002, 185, 556-559.	0.1	0
81	Comparison of Observed and Synthetic Spectra of AGB-Stars: A Progress Report. Proceedings of the International Astronomical Union, 2005, 1, 497-499.	0.0	Ο
82	Third Dredge-up in Globular Cluster AGB Stars: Observation Versus Theory. , 2007, , .		0
83	Testing Evolutionary Models with Observations of Galactic Bulge AGB Stars. AIP Conference Proceedings, 2008, , .	0.4	Ο
84	Observing Third Dredge Up in NGC 1846. AIP Conference Proceedings, 2008, , .	0.4	0
85	A study of AGB stars in LMC clusters. Proceedings of the International Astronomical Union, 2008, 4, 397-402.	0.0	0
86	Science case for 1 mas spectro-imagining in the near-infrared. , 2008, , .		0
87	Phase referencing in optical interferometry. Proceedings of SPIE, 2008, , .	0.8	0
88	Keplerand the Long Period Variables. EPJ Web of Conferences, 2015, 101, 06032.	0.3	0
89	Atmospheric structure and mass loss in Miras. Journal of Physics: Conference Series, 2016, 728, 022003.	0.4	0
90	Kepler-K2: A Search for Very Red Variables. EPJ Web of Conferences, 2017, 160, 01008.	0.3	0

#	Article	IF	CITATIONS
91	The Structure of the Inner Circumstellar Shell in Miras. Proceedings of the International Astronomical Union, 2018, 14, 419-420.	0.0	Ο
92	Kepler K2: A Search for Very Red Stellar Objects. Proceedings of the International Astronomical Union, 2018, 14, 413-415.	0.0	0
93	Masses of white dwarfs in symbiotic binaries. Proceedings of the International Astronomical Union, 2019, 15, 211-214.	0.0	Ο
94	New results for FBS late-type stars using Gaia EDR3 data. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	0
95	A CRIRES-POP Atlas of the K Giant 10 Leo. EAS Publications Series, 2015, 71-72, 325-326.	0.3	Ο
96	UVES and CRIRES Spectroscopy of AGB Stars: Technetium and the Third Dredge-up. , 2008, , 35-38.		0