
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyproline II structure in proteins: Identification by chiroptical spectroscopies, stability, and functions. Chirality, 2002, 14, 782-792.	2.6	237
2	Dissection of Human Tropoelastin:Â Exon-By-Exon Chemical Synthesis and Related Conformational Studiesâ€. Biochemistry, 2003, 42, 13347-13362.	2.5	158
3	Supramolecular Amyloid-like Assembly of the Polypeptide Sequence Coded by Exon 30 of Human Tropoelastin. Journal of Biological Chemistry, 2005, 280, 2682-2690.	3.4	93
4	Design and Production of a Chimeric Resilin-, Elastin-, and Collagen-Like Engineered Polypeptide. Biomacromolecules, 2011, 12, 2957-2965.	5.4	90
5	Investigating by CD the molecular mechanism of elasticity of elastomeric proteins. Chirality, 2008, 20, 985-994.	2.6	75
6	Localizing α-Helices in Human Tropoelastin: Assembly of the Elastin "Puzzleâ€â€. Biochemistry, 2006, 45, 9518-9530.	2.5	70
7	Amyloid-like Fibrils in Elastin-Related Polypeptides: Structural Characterization and Elastic Properties. Biomacromolecules, 2008, 9, 796-803.	5.4	68
8	Dissection of human tropoelastin: Supramolecular organization of polypeptide sequences coded by particular exons. Matrix Biology, 2005, 24, 96-109.	3.6	64
9	Molecular and Supramolecular Structural Studies on Significant Repetitive Sequences of Resilin. ChemBioChem, 2010, 11, 83-93.	2.6	56
10	The dissection of human tropoelastin: from the molecular structure to the self-assembly to the elasticity mechanism. Pathologie Et Biologie, 2005, 53, 383-389.	2.2	54
11	Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biology, 2005, 24, 15-25.	3.6	53
12	Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: Signature of the amyloid fibers. Pathologie Et Biologie, 2014, 62, 100-107.	2.2	49
13	Kinetics and Thermodynamics of Type VIII β-Turn Formation: A CD, NMR, and Microsecond Explicit Molecular Dynamics Study of the GDNP Tetrapeptide. Biophysical Journal, 2006, 90, 2745-2759.	0.5	44
14	Dissection of Human Tropoelastin: Solution Structure, Dynamics and Self-Assembly of the Exon 5 Peptide. Chemistry - A European Journal, 2004, 10, 3166-3176.	3.3	41
15	Spectroscopic evidence revealing polyproline II structure in hydrophobic, putatively elastomeric sequences encoded by specific exons of human tropoelastin. Biopolymers, 2004, 73, 484-493.	2.4	39
16	On (GGLGY) synthetic repeating sequences of lamprin and analogous sequences. Matrix Biology, 2001, 20, 243-250.	3.6	36
17	Investigating the Amyloidogenic Nanostructured Sequences of Elastin:Â Sequence Encoded by Exon 28 of Human Tropoelastin Gene. Biomacromolecules, 2007, 8, 3478-3486.	5.4	35
18	Molecular and Supramolecular Structural Studies on Human Tropoelastin Sequences. Biophysical Journal, 2007, 93, 3640-3651.	0.5	35

#	Article	IF	CITATIONS
19	Role of polyproline II conformation in human tropoelastin structure. Chirality, 2011, 23, 694-702.	2.6	35
20	Tuning of hydrogel stiffness using a two omponent peptide system for mammalian cell culture. Journal of Biomedical Materials Research - Part A, 2019, 107, 535-544.	4.0	32
21	Supramolecular organization of elastin and elastin-related nanostructured biopolymers. Nanomedicine, 2007, 2, 203-218.	3.3	31
22	Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3. Matrix Biology, 2014, 36, 15-27.	3.6	29
23	Elastin peptides in aging and pathological conditions. Biomolecular Concepts, 2013, 4, 65-76.	2.2	27
24	Synthesis of and Structural Studies on Repeating Sequences of Abductin. Macromolecular Bioscience, 2005, 5, 502-511.	4.1	26
25	Electrospun poly(<scp>d,l</scp> â€lactide)/gelatin/glassâ€ceramics tricomponent nanofibrous scaffold for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2020, 108, 1064-1076.	4.0	24
26	Investigating the Role of (2 <i>S</i> ,4 <i>R</i>)-4-Hydroxyproline in Elastin Model Peptides. Biomacromolecules, 2013, 14, 4278-4288.	5.4	22
27	Thermal and dynamic mechanical behavior of poly(lactic acid) (PLA)â€based electrospun scaffolds for tissue engineering. Journal of Applied Polymer Science, 2021, 138, 51313.	2.6	21
28	Influence of amino acid specificities on the molecular and supramolecular organization of glycineâ€rich elastinâ€like polypeptides in water. Biopolymers, 2011, 95, 702-721.	2.4	20
29	Formation of nanostructures by self-assembly of an elastin peptide. Soft Matter, 2009, 5, 104-113.	2.7	19
30	Tuning self-assembly in elastin-derived peptides. Soft Matter, 2015, 11, 3385-3395.	2.7	19
31	Electrospun poly-l-lactide scaffold for the controlled and targeted delivery of a synthetically obtained Diclofenac prodrug to treat actinic keratosis. Acta Biomaterialia, 2017, 52, 187-196.	8.3	19
32	Structural and biological properties of Cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. Journal of Virological Methods, 2009, 155, 118-121.	2.1	18
33	Multiscale characterization of a chimeric biomimetic polypeptide for stem cell culture. Bioinspiration and Biomimetics, 2012, 7, 046007.	2.9	18
34	Investigating by circular dichroism some amyloidogenic elastinâ€derived polypeptides. Chirality, 2010, 22, E56-66.	2.6	17
35	Non-invasive characterization of hybrid gelatin:poly- <scp>l</scp> -lactide electrospun scaffolds using second harmonic generation and multiphoton imaging. Journal of Materials Chemistry B, 2018, 6, 6399-6412.	5.8	17
36	Circular dichroism studies on repeating polypeptide sequences of abductin. Chirality, 2005, 17, 364-372.	2.6	16

#	Article	IF	CITATIONS
37	Exon 26-coded polypeptide: An isolated hydrophobic domain of human tropoelastin able to self-assemble in vitro. Matrix Biology, 2008, 27, 441-450.	3.6	16
38	Combined effects of solvation and aggregation propensity on the final supramolecular structures adopted by hydrophobic, glycineâ€rich, elastinâ€like polypeptides. Biopolymers, 2013, 99, 292-313.	2.4	16
39	Water structure and elastin-like peptide aggregation. Journal of Thermal Analysis and Calorimetry, 2015, 120, 419-426.	3.6	16
40	Nanocellulose and Elastin Act as Plasticizers of Electrospun Bioinspired Scaffolds. ACS Applied Polymer Materials, 2020, 2, 4836-4847.	4.4	16
41	Heparan sulfates facilitate harmless amyloidogenic fibril formation interacting with elastin-like peptides. Scientific Reports, 2018, 8, 3115.	3.3	15
42	Molecular and supramolecular studies on polyglycine and poly-l-proline. Soft Matter, 2011, 7, 6327.	2.7	14
43	Amyloidogenesis of proteolytic fragments of human elastin. RSC Advances, 2013, 3, 13273.	3.6	14
44	Structure and modeling studies of the carboxy-terminus region of human tropoelastin. Matrix Biology, 2005, 24, 271-282.	3.6	13
45	Effect of chemical cross-linking on the mechanical properties of elastomeric peptides studied by single molecule force spectroscopy. Journal of Biomechanics, 2011, 44, 2118-2122.	2.1	13
46	On enhancers and inhibitors of elastin-derived amyloidogenesis. Nanomedicine, 2009, 4, 31-46.	3.3	11
47	Biological and Structural Characterization of a Naturally Inspired Material Engineered from Elastin as a Candidate for Tissue Engineering Applications. Langmuir, 2013, 29, 15898-15906.	3.5	11
48	Photoinduced Thiolâ€ene Chemistry Applied to the Synthesis of Selfâ€Assembling Elastinâ€Inspired Glycopeptides. Chemistry - A European Journal, 2017, 23, 2648-2659.	3.3	11
49	Synthesis, Solution Structure and Biological Activity of Val-Val-Pro-Gln,a Bioactive Elastin Peptide. European Journal of Organic Chemistry, 2005, 2005, 1644-1651.	2.4	10
50	Domains 12 to 16 of tropoelastin promote cell attachment and spreading through interactions with glycosaminoglycan and integrins alphaV and alpha5beta1. FEBS Journal, 2021, 288, 4024-4038.	4.7	10
51	Elastic fibers and amyloid deposition in vascular tissue. Future Neurology, 2007, 2, 523-536.	0.5	8
52	Human tropoelastin sequence: Dynamics of polypeptide coded by exon 6 in solution. Biopolymers, 2009, 91, 943-952.	2.4	8
53	An Elastin-Derived Self-Assembling Polypeptide. Journal of Soft Matter, 2013, 2013, 1-7.	1.7	7
54	Nanospheres from the self-assembly of an elastin-inspired triblock peptide. RSC Advances, 2015, 5, 95007-95013.	3.6	6

#	Article	IF	CITATIONS
55	Nanofibers of Human Tropoelastin-inspired peptides: Structural characterization and biological properties. Materials Science and Engineering C, 2017, 77, 927-934.	7.3	6
56	Fibrillar Self-Assembly of a Chimeric Elastin-Resilin Inspired Engineered Polypeptide. Nanomaterials, 2019, 9, 1613.	4.1	6
57	Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS. Analytical and Bioanalytical Chemistry, 2018, 410, 4925-4941.	3.7	5
58	Soft Hydrogel Inspired by Elastomeric Proteins. ACS Biomaterials Science and Engineering, 2021, 7, 5028-5038.	5.2	5
59	Effect of proline analogues on the conformation of elastin peptides. New Journal of Chemistry, 2013, 37, 1326.	2.8	4
60	Influence of the architecture on the molecular mobility of synthetic fragments inspired from human tropoelastin. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1427-1433.	2.9	4
61	Phase behavior and chain dynamics of elastin-like peptides versus amino acid sequences. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1323-1332.	3.6	4
62	Characterization of a Crosslinked Elastomericâ€Protein Inspired Polypeptide. Chirality, 2016, 28, 606-611.	2.6	3
63	Characterisation of helical structure in AFM micrographs of a trimer of the peptide sequence (ValGlyClyValGly). Surface and Interface Analysis, 2014, 46, 679-682.	1.8	2
64	Hyaluronic Acid-Functionalized Hybrid Gelatin–Poly-L-Lactide Scaffolds with Tunable Hydrophilicity. Tissue Engineering - Part C: Methods, 2021, 27, 589-604.	2.1	2
65	The elastin puzzle: A molecular and supramolecular study. Biomedical Spectroscopy and Imaging, 2014, 3, 249-259.	1.2	1
66	Labeling of Nanofiber-Forming Peptides by Site-Directed Bioconjugation: Effect of Spacer Length on Self-Assembly. Current Organic Synthesis, 2019, 16, 319-325.	1.3	1
67	Molecular Determinants for the Self-Assembly of Elastin Peptides. Conference Papers in Science, 2014, 2014, 1-4.	0.3	0
68	The Inhibitory Effect of Resveratrol on Elastin Amyloidogenesis. Conference Papers in Science, 2014, 2014, 1-4.	0.3	0
69	Cover Image, Volume 28, Issue 8. Chirality, 2016, 28, i-i.	2.6	Ο