Loganathan Ponnusamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730172/publications.pdf

Version: 2024-02-01

42 papers 1,511 citations

430874 18 h-index 315739 38 g-index

42 all docs 42 docs citations

42 times ranked 1643 citing authors

#	Article	IF	CITATIONS
1	Colonization by the Red Imported Fire Ant, Solenopsis invicta, Modifies Soil Bacterial Communities. Microbial Ecology, 2022, 84, 240-256.	2.8	6
2	Characterization of Long Non-Coding RNAs in the Bollworm, Helicoverpa zea, and Their Possible Role in Cry1Ac-Resistance. Insects, 2022, 13, 12.	2.2	8
3	Analyses of Bloodmeal Hosts and Prevalence of <i>Rickettsia parkeri</i> in the Gulf Coast Tick <i>Amblyomma maculatum</i> (Acari: Ixodidae) From a Reconstructed Piedmont Prairie Ecosystem, North Carolina. Journal of Medical Entomology, 2022, 59, 1382-1393.	1.8	1
4	Bacterial Isolates Derived from Nest Soil Affect the Attraction and Digging Behavior of Workers of the Red Imported Fire Ant, Solenopsis invicta Buren. Insects, 2022, 13, 444.	2.2	2
5	Rickettsia felis and Other Rickettsia Species in Chigger Mites Collected from Wild Rodents in North Carolina, USA. Microorganisms, 2022, 10, 1342.	3.6	6
6	Bacterial Microbiota of Field-Collected Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Bt and Non-Bt Cotton. Microorganisms, 2021, 9, 878.	3.6	10
7	Sphingobacterium phlebotomi sp. nov., a new member of family Sphingobacteriaceae isolated from sand fly rearing substrate. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	8
8	Tick Ecdysteroid Hormone, Global Microbiota/Rickettsia Signaling in the Ovary versus Carcass during Vitellogenesis in Part-Fed (Virgin) American Dog Ticks, Dermacentor variabilis. Microorganisms, 2021, 9, 1242.	3.6	2
9	Oviposition-Site Selection of <i>Phlebotomus papatasi</i> (Diptera: Psychodidae) Sand Flies: Attraction to Bacterial Isolates From an Attractive Rearing Medium. Journal of Medical Entomology, 2021, 58, 518-527.	1.8	10
10	Multiple Known Mechanisms and a Possible Role of an Enhanced Immune System in Bt-Resistance in a Field Population of the Bollworm, Helicoverpa zea: Differences in Gene Expression with RNAseq. International Journal of Molecular Sciences, 2020, 21, 6528.	4.1	14
11	The egg and larval pheromone dodecanoic acid mediates density-dependent oviposition of Phlebotomus papatasi. Parasites and Vectors, 2020, 13, 280.	2.5	13
12	Diversity and structure of the bacterial microbiome of the American dog tick, Dermacentor variabilis, is dominated by the endosymbiont Francisella. Symbiosis, 2019, 79, 239-250.	2.3	20
13	Diel periodicity and visual cues guide oviposition behavior in Phlebotomus papatasi, vector of old-world cutaneous leishmaniasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007165.	3.0	9
14	A Diverse Microbial Community Supports Larval Development and Survivorship of the Asian Tiger Mosquito (Diptera: Culicidae). Journal of Medical Entomology, 2019, 56, 632-640.	1.8	7
15	Exogenous and endogenous microbiomes of wild-caught Phormia regina (Diptera: Calliphoridae) flies from a suburban farm by 16S rRNA gene sequencing. Scientific Reports, 2019, 9, 20365.	3.3	21
16	Bacterial microbiome of the chigger mite Leptotrombidium imphalum varies by life stage and infection with the scrub typhus pathogen Orientia tsutsugamushi. PLoS ONE, 2018, 13, e0208327.	2.5	16
17	Prevalence of Rickettsia Species (Rickettsiales: Rickettsiaceae) in Dermacentor variabilis Ticks (Acari:) Tj ETQq1 1	. 0.784314 1.8	4 rgBT /Ove <mark>rl</mark> o
18	Biology, Pest Status, Microbiome and Control of Kudzu Bug (Hemiptera: Heteroptera: Plataspidae): A New Invasive Pest in the U.S International Journal of Molecular Sciences, 2016, 17, 1570.	4.1	22

#	Article	IF	CITATIONS
19	Design and Testing of Novel Lethal Ovitrap to Reduce Populations of Aedes Mosquitoes: Community-Based Participatory Research between Industry, Academia and Communities in Peru and Thailand. PLoS ONE, 2016, 11, e0160386.	2.5	16
20	Effect of Spatial Repellent Exposure on Dengue Vector Attraction to Oviposition Sites. PLoS Neglected Tropical Diseases, 2016, 10, e0004850.	3.0	23
21	Incident Tick-Borne Infections in a Cohort of North Carolina Outdoor Workers. Vector-Borne and Zoonotic Diseases, 2016, 16, 302-308.	1.5	22
22	Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals. Journal of Clinical Microbiology, 2016, 54, 972-979.	3.9	14
23	Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions. Parasites and Vectors, 2015, 8, 486.	2.5	27
24	Attraction and oviposition preferences of Phlebotomus papatasi (Diptera: Psychodidae), vector of Old-World cutaneous leishmaniasis, to larval rearing media. Parasites and Vectors, 2015, 8, 663.	2.5	18
25	Evidence forAedes aegypti(Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon. Journal of Medical Entomology, 2015, 52, 726-729.	1.8	7
26	Long-Lasting Permethrin-Impregnated Clothing Protects Against Mosquito Bites in Outdoor Workers. American Journal of Tropical Medicine and Hygiene, 2015, 93, 869-874.	1.4	35
27	Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex. Applied and Environmental Microbiology, 2015, 81, 6200-6209.	3.1	167
28	Diversity of Rickettsiales in the Microbiome of the Lone Star Tick, Amblyomma americanum. Applied and Environmental Microbiology, 2014, 80, 354-359.	3.1	82
29	Prevalence of Rickettsiales in ticks removed from the skin of outdoor workers in North Carolina. Parasites and Vectors, 2014, 7, 607.	2.5	40
30	Advancing Integrated Tick Management to Mitigate Burden of Tick-Borne Diseases. Outlooks on Pest Management, 2014, 25, 382-389.	0.2	35
31	Lethal ovitraps and dengue prevention: report from Iquitos, Peru. International Journal of Infectious Diseases, 2012, 16, e473.	3.3	4
32	Bacteria Stimulate Hatching of Yellow Fever Mosquito Eggs. PLoS ONE, 2011, 6, e24409.	2.5	61
33	Species Composition of Bacterial Communities Influences Attraction of Mosquitoes to Experimental Plant Infusions. Microbial Ecology, 2010, 59, 158-173.	2.8	60
34	Oviposition Responses of the Mosquitoes Aedes aegypti and Aedes albopictus to Experimental Plant Infusions in Laboratory Bioassays. Journal of Chemical Ecology, 2010, 36, 709-719.	1.8	57
35	Bacterial Pathogens in Ixodid Ticks from a Piedmont County in North Carolina: Prevalence of Rickettsial Organisms. Vector-Borne and Zoonotic Diseases, 2010, 10, 939-952.	1.5	74
36	Diversity of Bacterial Communities in Container Habitats of Mosquitoes. Microbial Ecology, 2008, 56, 593-603.	2.8	45

#	Article	IF	Citations
37	Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by <i> Aedes aegypti < /i > Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9262-9267.</i>	7.1	197
38	Host-Feeding Patterns of <i> Aedes albopictus </i> (Diptera: Culicidae) in Relation to Availability of Human and Domestic Animals in Suburban Landscapes of Central North Carolina. Journal of Medical Entomology, 2006, 43, 543-551.	1.8	145
39	Host-Feeding Patterns of <i>Aedes albopictus</i> (Diptera: Culicidae) in Relation to Availability of Human and Domestic Animals in Suburban Landscapes of Central North Carolina. Journal of Medical Entomology, 2006, 43, 543-551.	1.8	122
40	Genetic diversity and relationship between Bradyrhizobium strains isolated from blackgram and cowpea. Biology and Fertility of Soils, 2001, 34, 276-281.	4.3	11
41	Isolation and characterization of two genetically distant groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L Journal of Applied Microbiology, 1999, 87, 167-172.	3.1	57
42	Competitiveness of native Bradyrhizobium japonicum strains in two different soil types. Biology and Fertility of Soils, 1997, 25, 279-284.	4.3	3