
Zhengliang L Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2730005/publications.pdf Version: 2024-02-01

ZHENCLANC L WIL

#	Article	IF	CITATIONS
1	Endoglycosidase assay using enzymatically synthesized fluorophore-labeled glycans as substrates to uncover enzyme substrate specificities. Communications Biology, 2022, 5, .	4.4	0
2	Assays for hyaluronidases and heparanase using nonreducing end fluorophore-labeled hyaluronan and heparan sulfate proteoglycan. Glycobiology, 2021, 31, 1435-1443.	2.5	3
3	Fluorescent glycan fingerprinting of SARS2 spike proteins. Scientific Reports, 2021, 11, 20428.	3.3	4
4	Differential distribution of N- and O-Glycans and variable expression of sialyl-T antigen on HeLa cells—Revealed by direct fluorescent glycan imaging. Glycobiology, 2020, 30, 454-462.	2.5	5
5	Fluorescent Detection of <i>O</i> -GlcNAc via Tandem Glycan Labeling. Bioconjugate Chemistry, 2020, 31, 2098-2102.	3.6	7
6	Detecting substrate glycans of fucosyltransferases with fluorophore-conjugated fucose and methods for glycan electrophoresis. Glycobiology, 2020, 30, 970-980.	2.5	11
7	Direct fluorescent glycan labeling with recombinant sialyltransferases. Glycobiology, 2019, 29, 750-754.	2.5	15
8	lmaging specific cellular glycan structures using glycosyltransferases via click chemistry. Glycobiology, 2018, 28, 69-79.	2.5	22
9	Detecting and Imaging O-GlcNAc Sites Using Glycosyltransferases: A Systematic Approach to Study O-GlcNAc. Cell Chemical Biology, 2018, 25, 1428-1435.e3.	5.2	12
10	Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells. Stem Cells, 2016, 34, 2501-2511.	3.2	48
11	Non-reducing end labeling of heparan sulfate via click chemistry and a high throughput ELISA assay for heparanase. Glycobiology, 2016, 27, cww130.	2.5	8
12	Core-6 fucose and the oligomerization of the 1918 pandemic influenza viral neuraminidase. Biochemical and Biophysical Research Communications, 2016, 473, 524-529.	2.1	6
13	Probing sialoglycans on fetal bovine fetuin with azido-sugars using glycosyltransferases. Glycobiology, 2016, 26, 329-334.	2.5	18
14	Glycoprotein labeling with click chemistry (GLCC) and carbohydrate detection. Carbohydrate Research, 2015, 412, 1-6.	2.3	21
15	Detecting O-GlcNAc using in vitro sulfation. Glycobiology, 2014, 24, 740-747.	2.5	11
16	A Liquid Chromatography-Mass Spectrometry-based Approach to Characterize the Substrate Specificity of Mammalian Heparanase. Journal of Biological Chemistry, 2014, 289, 34141-34151.	3.4	30
17	Golgi-resident PAP-specific 3′-phosphatase-coupled sulfotransferase assays. Analytical Biochemistry, 2012, 423, 86-92.	2.4	14
18	Universal phosphatase-coupled glycosyltransferase assay. Glycobiology, 2011, 21, 727-733.	2.5	84

ZHENGLIANG L WU

#	Article	IF	CITATIONS
19	Phosphatase-Coupled Universal Kinase Assay and Kinetics for First-Order-Rate Coupling Reaction. PLoS ONE, 2011, 6, e23172.	2.5	20
20	A versatile polyacrylamide gel electrophoresis based sulfotransferase assay. BMC Biotechnology, 2010, 10, 11.	3.3	13
21	Active 1918 pandemic flu viral neuraminidase has distinct N-glycan profile and is resistant to trypsin digestion. Biochemical and Biophysical Research Communications, 2009, 379, 749-753.	2.1	34
22	Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling. Biochemical Journal, 2005, 389, 383-388.	3.7	6
23	Characterizing the Non-reducing End Structure of Heparan Sulfate. Journal of Biological Chemistry, 2005, 280, 33749-33755.	3.4	26
24	Determining Heparan Sulfate Structure in the Vicinity of Specific Sulfotransferase Recognition Sites by Mass Spectrometry. Journal of Biological Chemistry, 2004, 279, 1861-1866.	3.4	26
25	Enzymatic synthesis of antithrombin Ill–binding heparan sulfate pentasaccharide. Nature Biotechnology, 2003, 21, 1343-1346.	17.5	139
26	The Involvement of Heparan Sulfate (HS) in FGF1/HS/FGFR1 Signaling Complex. Journal of Biological Chemistry, 2003, 278, 17121-17129.	3.4	135
27	Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides. Journal of Biological Chemistry, 2003, 278, 52613-52621.	3.4	51
28	A new strategy for defining critical functional groups on heparan sulfate. FASEB Journal, 2002, 16, 539-545.	0.5	51
29	Analysis of Heparan Sulfate Oligosaccharides with Ion Pair-Reverse Phase Capillary High Performance Liquid Chromatography-Microelectrospray Ionization Time-of-Flight Mass Spectrometry. Journal of the American Chemical Society, 2002, 124, 8707-8718.	13.7	167
30	Transcriptional regulation of human oxysterol 7α-hydroxylase gene (CYP7B1) by Sp1. Gene, 2001, 272, 191-197.	2.2	26
31	Detecting and Imaging O-GlcNAc Sites Using Glycosyltransferases: A Systematic Approach to Study O-GlcNAc. SSRN Electronic Journal, 0, , .	0.4	0