List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2729084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. Journal of Hydrometeorology, 2008, 9, 535-548.	1.9	366
2	Drought indicators based on modelâ€assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resources Research, 2012, 48, .	4.2	310
3	Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 2014, 17, 193-202.	6.4	274
4	Heat waves in the United States: definitions, patterns and trends. Climatic Change, 2013, 118, 811-825.	3.6	241
5	Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 2019, 55, 7564-7586.	4.2	229
6	Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences, 2016, 20, 2611-2628.	4.9	183
7	Europe's 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks. International Journal of Climatology, 2006, 26, 743-769.	3.5	181
8	A Review of Drought in the Middle East and Southwest Asia. Journal of Climate, 2016, 29, 8547-8574.	3.2	163
9	Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. Journal of Hydrology, 2012, 446-447, 103-115.	5.4	154
10	Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecology Letters, 2013, 16, 478-486.	6.4	151
11	Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System. Journal of Hydrometeorology, 2016, 17, 1951-1972.	1.9	137
12	Agroecosystem specific climate vulnerability analysis: application of the livelihood vulnerability index to a tropical highland region. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 39-65.	2.1	136
13	Heat Waves and Health Outcomes in Alabama (USA): The Importance of Heat Wave Definition. Environmental Health Perspectives, 2014, 122, 151-158.	6.0	131
14	Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. International Journal of Remote Sensing, 2005, 26, 5535-5554.	2.9	130
15	Towards an integrated soil moisture drought monitor for East Africa. Hydrology and Earth System Sciences, 2012, 16, 2893-2913.	4.9	129
16	Evaluation of the Global Land Data Assimilation System using global river discharge data and a sourceâ€ŧoâ€sink routing scheme. Water Resources Research, 2010, 46, .	4.2	113
17	Opportunities and Challenges for Personal Heat Exposure Research. Environmental Health Perspectives, 2017, 125, 085001.	6.0	110
18	Forward-Looking Assimilation of MODIS-Derived Snow-Covered Area into a Land Surface Model. Journal of Hydrometeorology, 2009, 10, 130-148.	1.9	98

#	Article	IF	CITATIONS
19	Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. American Journal of Agricultural Economics, 2019, 101, 193-210.	4.3	97
20	Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environmental Modelling and Software, 2015, 67, 149-159.	4.5	95
21	NASA's Remotely Sensed Precipitation: A Reservoir for Applications Users. Bulletin of the American Meteorological Society, 2017, 98, 1169-1184.	3.3	90
22	Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sensing of Environment, 2020, 247, 111861.	11.0	85
23	Andropogoneae Evolution and Generic Limits in Sorghum (Poaceae) Using ndhF Sequences. Systematic Botany, 1999, 24, 267.	0.5	75
24	Impact of Irrigation Methods on Land Surface Model Spinup and Initialization of WRF Forecasts. Journal of Hydrometeorology, 2015, 16, 1135-1154.	1.9	75
25	Agroecosystem Analysis of the Choke Mountain Watersheds, Ethiopia. Sustainability, 2013, 5, 592-616.	3.2	73
26	Examining the role of unusually warm Indoâ€Pacific seaâ€surface temperatures in recent African droughts. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 360-383.	2.7	70
27	Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resources Research, 2014, 50, 386-408.	4.2	68
28	El Niño and the shifting geography of cholera in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4436-4441.	7.1	68
29	Trend and periodicity of drought over Ethiopia. International Journal of Climatology, 2017, 37, 4733-4748.	3.5	65
30	Area-level risk factors for adverse birth outcomes: trends in urban and rural settings. BMC Pregnancy and Childbirth, 2013, 13, 129.	2.4	64
31	An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas. Journal of Hydrology, 2014, 519, 1859-1869.	5.4	63
32	Representation of Soil Moisture Feedbacks during Drought in NASA Unified WRF (NU-WRF). Journal of Hydrometeorology, 2013, 14, 360-367.	1.9	62
33	Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environmental Research, 2018, 165, 91-109.	7.5	62
34	Modulation of Daily Precipitation over East Africa by the Madden–Julian Oscillation*. Journal of Climate, 2014, 27, 6016-6034.	3.2	61
35	Remotely sensed estimates of surface salinity in the Chesapeake Bay: A statistical approach. Remote Sensing of Environment, 2012, 123, 522-531.	11.0	60
36	Regional Impact of an Elevated Heat Source: The Zagros Plateau of Iran. Journal of Climate, 2007, 20, 4133-4146.	3.2	53

#	Article	IF	CITATIONS
37	Climate and Vegetation in the Middle East: Interannual Variability and Drought Feedbacks. Journal of Climate, 2007, 20, 3924-3941.	3.2	51
38	Satelliteâ€based hybrid drought monitoring tool for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia. Water Resources Research, 2014, 50, 2176-2190.	4.2	50
39	Temperature and heat in informal settlements in Nairobi. PLoS ONE, 2017, 12, e0187300.	2.5	50
40	Groundwater Withdrawals Under Drought: Reconciling GRACE and Land Surface Models in the United States High Plains Aquifer. Water Resources Research, 2018, 54, 5282-5299.	4.2	49
41	Vulnerability of sorghum production to extreme, sub-seasonal weather under climate change. Environmental Research Letters, 2019, 14, 045005.	5.2	49
42	Evaluating the Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia. Frontiers in Earth Science, 2019, 7, .	1.8	47
43	Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions. Hydrology and Earth System Sciences, 2021, 25, 565-581.	4.9	47
44	Madden-Julian Oscillation impacts on tropical African precipitation. Atmospheric Research, 2017, 184, 88-102.	4.1	46
45	Associations between meteorology and COVID-19 in early studies: Inconsistencies, uncertainties, and recommendations. One Health, 2021, 12, 100225.	3.4	46
46	Regional Atmospheric Circulation and Rainfall Variability in South Equatorial Africa. Journal of Climate, 2015, 28, 809-818.	3.2	44
47	A framework for research linking weather, climate and COVID-19. Nature Communications, 2020, 11, 5730.	12.8	44
48	Building Climate Resilience in the Blue Nile/Abay Highlands: A Role for Earth System Sciences. International Journal of Environmental Research and Public Health, 2012, 9, 435-461.	2.6	43
49	Perspectives on <scp>CMIP5</scp> model performance in the Nile River headwaters regions. International Journal of Climatology, 2015, 35, 4262-4275.	3.5	43
50	Modeling the largeâ€scale water balance impact of different irrigation systems. Water Resources Research, 2008, 44, .	4.2	42
51	Geospatial interpolation of MODIS-derived salinity and temperature in the Chesapeake Bay. Remote Sensing of Environment, 2013, 135, 167-177.	11.0	42
52	Subseasonal Analysis of Precipitation Variability in the Blue Nile River Basin. Journal of Climate, 2014, 27, 325-344.	3.2	42
53	Application of Statistical Models to the Prediction of Seasonal Rainfall Anomalies over the Sahel. Journal of Applied Meteorology and Climatology, 2014, 53, 614-636.	1.5	42
54	Assimilating GRACE Into a Land Surface Model in the Presence of an Irrigationâ€Induced Groundwater Trend. Water Resources Research, 2019, 55, 11274-11294.	4.2	42

Βέν Ζαιτςμικ

#	Article	IF	CITATIONS
55	Impacts of Anthropogenic Heat on Summertime Rainfall in Beijing. Journal of Hydrometeorology, 2017, 18, 693-712.	1.9	38
56	A tool for hierarchical climate regionalization. Earth Science Informatics, 2015, 8, 949-958.	3.2	37
57	Building Climate Resilience in the Blue Nile/Abay Highlands: A Framework for Action. International Journal of Environmental Research and Public Health, 2012, 9, 610-631.	2.6	34
58	Erosion hotspot identification in the sub-humid Ethiopian highlands. Ecohydrology and Hydrobiology, 2019, 19, 146-154.	2.3	34
59	Heat waves and fatal traffic crashes in the continental United States. Accident Analysis and Prevention, 2018, 119, 195-201.	5.7	32
60	Toward park design optimization to mitigate the urban heat Island: Assessment of the cooling effect in five U.S. cities. Sustainable Cities and Society, 2022, 81, 103870.	10.4	32
61	The Madden–Julian Oscillation's Influence on Spring Rainy Season Precipitation over Equatorial West Africa*. Journal of Climate, 2015, 28, 8653-8672.	3.2	31
62	Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data. Remote Sensing, 2018, 10, 252.	4.0	31
63	The NASA Hydrological Forecast System for Food and Water Security Applications. Bulletin of the American Meteorological Society, 2020, 101, E1007-E1025.	3.3	31
64	The role of local heating in the 2015 Indian Heat Wave. Scientific Reports, 2017, 7, 7707.	3.3	30
65	GRACE Improves Seasonal Groundwater Forecast Initialization over the United States. Journal of Hydrometeorology, 2020, 21, 59-71.	1.9	29
66	The Sustainability of Community-Based Adaptation Projects in the Blue Nile Highlands of Ethiopia. Sustainability, 2014, 6, 4308-4325.	3.2	28
67	Can Multispectral Information Improve Remotely Sensed Estimates of Total Suspended Solids? A Statistical Study in Chesapeake Bay. Remote Sensing, 2018, 10, 1393.	4.0	28
68	Changing Patterns of Tree Cover in a Tropical Highland Region and Implications for Food, Energy, and Water Resources. Frontiers in Environmental Science, 2019, 7, .	3.3	28
69	The question of Sudan: a hydro-economic optimization model for the Sudanese Blue Nile. Hydrology and Earth System Sciences, 2015, 19, 2275-2293.	4.9	27
70	Determining Particulate Matter and Black Carbon Exfiltration Estimates for Traditional Cookstove Use in Rural Nepalese Village Households. Environmental Science & Technology, 2015, 49, 5555-5562.	10.0	27
71	Shocks, seasonality, and disaggregation: Modelling food security through the integration of agricultural, transportation, and economic systems. Agricultural Systems, 2018, 164, 165-184.	6.1	26
72	Pathogen-Specific Impacts of the 2011–2012 La Niña-Associated Floods on Enteric Infections in the MAL-ED Peru Cohort: A Comparative Interrupted Time Series Analysis. International Journal of Environmental Research and Public Health, 2020, 17, 487.	2.6	26

#	Article	IF	CITATIONS
73	MODIS-Derived Boundary Conditions for a Mesoscale Climate Model: Application to Irrigated Agriculture in the Euphrates Basin. Monthly Weather Review, 2005, 133, 1727-1743.	1.4	25
74	Land Cover Classification in Complex and Fragmented Agricultural Landscapes of the Ethiopian Highlands. Remote Sensing, 2016, 8, 1020.	4.0	25
75	Carbon sequestration via wood harvest and storage: An assessment of its harvest potential. Climatic Change, 2013, 118, 245-257.	3.6	24
76	Local Perceptions of Water-Energy-Food Security: Livelihood Consequences of Dam Construction in Ethiopia. Sustainability, 2020, 12, 2161.	3.2	24
77	Associations Between Eight Earth Observationâ€Derived Climate Variables and Enteropathogen Infection: An Independent Participant Data Metaâ€Analysis of Surveillance Studies With Broad Spectrum Nucleic Acid Diagnostics. GeoHealth, 2022, 6, e2021GH000452.	4.0	24
78	Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models. Journal of Climate, 2016, 29, 9027-9043.	3.2	23
79	Monthly flooded area classification using low resolution SAR imagery in the Sudd wetland from 2007 to 2011. Remote Sensing of Environment, 2017, 194, 205-218.	11.0	23
80	Intraurban Temperature Variability in Baltimore. Journal of Applied Meteorology and Climatology, 2017, 56, 159-171.	1.5	23
81	Impact of Soil Conservation and Eucalyptus on Hydrology and Soil Loss in the Ethiopian Highlands. Water (Switzerland), 2019, 11, 2299.	2.7	23
82	Irrigation Water Demand Sensitivity to Climate Variability Across the Contiguous United States. Water Resources Research, 2021, 57, 2020WR027738.	4.2	23
83	The NASA Global Flood Mapping System. Springer Remote Sensing/photogrammetry, 2017, , 47-63.	0.4	22
84	Use of earth observation-derived hydrometeorological variables to model and predict rotavirus infection (MAL-ED): a multisite cohort study. Lancet Planetary Health, The, 2019, 3, e248-e258.	11.4	22
85	Land Cover Change in the Blue Nile River Headwaters: Farmers' Perceptions, Pressures, and Satellite-Based Mapping. Land, 2021, 10, 68.	2.9	22
86	Development of Male Flowers inZizania aquatica(North American Wildâ€Rice; Gramineae). International Journal of Plant Sciences, 2000, 161, 345-351.	1.3	21
87	Influence of Precipitation Forcing Uncertainty on Hydrological Simulations with the NASA South Asia Land Data Assimilation System. Hydrology, 2018, 5, 57.	3.0	21
88	Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections. Climatic Change, 2018, 151, 525-539.	3.6	20
89	Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission. PLoS ONE, 2018, 13, e0193493.	2.5	20
90	A predictive model for Lake Chad total surface water area using remotely sensed and modeled hydrological and meteorological parameters and multivariate regression analysis. Journal of Hydrology, 2019, 568, 1071-1080.	5.4	20

#	Article	IF	CITATIONS
91	Spatial and temporal variation in the isotopic composition of Ethiopian precipitation. Journal of Hydrology, 2020, 585, 124364.	5.4	20
92	Evaluation of Satellite Rainfall Estimates for Meteorological Drought Analysis over the Upper Blue Nile Basin, Ethiopia. Geosciences (Switzerland), 2020, 10, 352.	2.2	20
93	Uncertainty in Model Predictions of Vibrio vulnificus Response to Climate Variability and Change: A Chesapeake Bay Case Study. PLoS ONE, 2014, 9, e98256.	2.5	20
94	Modeling Slope Stability in Honduras. Soil Science Society of America Journal, 2003, 67, 268-278.	2.2	19
95	Are the Central Andes Mountains a Warming Hot Spot?. Journal of Climate, 2017, 30, 3589-3608.	3.2	19
96	A nine-year study on the benefits and risks of soil and water conservation practices in the humid highlands of Ethiopia: The Debre Mawi watershed. Journal of Environmental Management, 2020, 270, 110885.	7.8	19
97	The Impact of Climate Change on Agriculture Production in Ethiopia: Application of a Dynamic Computable General Equilibrium Model. American Journal of Climate Change, 2021, 10, 32-50.	0.9	19
98	Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River. Sustainability, 2021, 13, 2244.	3.2	19
99	Climate has contrasting direct and indirect effects on armed conflicts. Environmental Research Letters, 2020, 15, 104017.	5.2	19
100	Linking Seasonal Predictions to Decision-Making and Disaster Management in the Greater Horn of Africa. Bulletin of the American Meteorological Society, 2016, 97, ES89-ES92.	3.3	18
101	Robust decision making in data scarce contexts: addressing data and model limitations for infrastructure planning under transient climate change. Climatic Change, 2017, 140, 323-337.	3.6	18
102	The Value of Remotely Sensed Information: The Case of a GRACE-Enhanced Drought Severity Index. Weather, Climate, and Society, 2018, 10, 187-203.	1.1	18
103	Associations between Household-Level Exposures and All-Cause Diarrhea and Pathogen-Specific Enteric Infections in Children Enrolled in Five Sentinel Surveillance Studies. International Journal of Environmental Research and Public Health, 2020, 17, 8078.	2.6	18
104	Methods for Estimating Wet Bulb Globe Temperature From Remote and Low ost Data: A Comparative Study in Central Alabama. GeoHealth, 2020, 4, e2019GH000231.	4.0	18
105	A macroinvertebrate multi-metric index for Ethiopian highland streams. Hydrobiologia, 2019, 843, 125-141.	2.0	17
106	Recent Advances in Land Data Assimilation at the NASA Global Modeling and Assimilation Office. , 2009, , 407-428.		17
107	Improving early warning of drought-driven food insecurity in southern Africa using operational hydrological monitoring and forecasting products. Natural Hazards and Earth System Sciences, 2020, 20, 1187-1201.	3.6	17
108	Estimating Occupational Heat Exposure From Personal Sampling of Public Works Employees in Birmingham, Alabama. Journal of Occupational and Environmental Medicine, 2019, 61, 518-524.	1.7	16

#	Article	IF	CITATIONS
109	Evaluation of remotely sensed prediction and forecast models for Vibrio parahaemolyticus in the Chesapeake Bay. Remote Sensing of Environment, 2020, 250, 112016.	11.0	16
110	Lack of vegetation exacerbates exposure to dangerous heat in dense settlements in a tropical African city. Environmental Research Letters, 2022, 17, 024004.	5.2	16
111	Individual and community level factors with a significant role in determining child height-for-age Z score in East Gojjam Zone, Amhara Regional State, Ethiopia: a multilevel analysis. Archives of Public Health, 2017, 75, 27.	2.4	15
112	Impact of water and energy infrastructure on local well-being: an agent-based analysis of the water-energy-food nexus. Structural Change and Economic Dynamics, 2020, 55, 165-176.	4.5	15
113	Water, Geography, and Aksumite Civilization: The Southern Red Sea Archaeological Histories (SRSAH) Project Survey (2009–2016). African Archaeological Review, 2020, 37, 51-67.	1.4	15
114	Madden–Julian oscillation influence on sub-seasonal rainfall variability on the west of South America. Climate Dynamics, 2020, 54, 2167-2185.	3.8	15
115	Emergency department visits associated with satellite observed flooding during and following Hurricane Harvey. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 832-841.	3.9	15
116	Cascading Droughtâ€Heat Dynamics During the 2021 Southwest United States Heatwave. Geophysical Research Letters, 2022, 49, .	4.0	15
117	Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru. PLoS ONE, 2014, 9, e100037.	2.5	14
118	Modeling the impact of highland settlements on ecological disturbance of streams in Choke Mountain Catchment: Macroinvertebrate assemblages and water quality. Ecological Indicators, 2017, 73, 452-459.	6.3	14
119	Simulating Behavioral Influences on Community Flood Risk under Future Climate Scenarios. Risk Analysis, 2020, 40, 884-898.	2.7	14
120	Analysis of the Spatial Variability of Soil Texture in a Tropical Highland: The Case of the Jema Watershed, Northwestern Highlands of Ethiopia. International Journal of Environmental Research and Public Health, 2018, 15, 1903.	2.6	13
121	Identifying Key Water Resource Vulnerabilities in Dataâ€ S carce Transboundary River Basins. Water Resources Research, 2018, 54, 5264-5281.	4.2	13
122	Enabling Stakeholder Decision-Making With Earth Observation and Modeling Data Using Tethys Platform. Frontiers in Environmental Science, 2019, 7, .	3.3	13
123	Impact of hydropower development on rural livelihood: An agent-based exploration. Journal of Cleaner Production, 2020, 275, 122333.	9.3	13
124	A meta-analysis of plant facilitation in coastal dune systems: responses, regions, and research gaps. PeerJ, 2015, 3, e768.	2.0	13
125	Interdecadal <i>Trichodesmium</i> variability in cold North Atlantic waters. Global Biogeochemical Cycles, 2016, 30, 1620-1638.	4.9	12
126	Vibrio parahaemolyticus in the Chesapeake Bay: Operational <i>In Situ</i> Prediction and Forecast Models Can Benefit from Inclusion of Lagged Water Quality Measurements. Applied and Environmental Microbiology, 2019, 85, .	3.1	12

Βεν Ζαιτςμικ

#	Article	IF	CITATIONS
127	Temperature anomalies affect violent conflicts in African and Middle Eastern warm regions. Global Environmental Change, 2020, 63, 102118.	7.8	12
128	A Dataâ€Driven Framework to Characterize Stateâ€Level Water Use in the United States. Water Resources Research, 2020, 56, e2019WR024894.	4.2	12
129	Analyzing constraints in the water-energy-food nexus: The case of eucalyptus plantation in Ethiopia. Ecological Economics, 2021, 180, 106875.	5.7	12
130	Modeling Slope Stability in Honduras. Soil Science Society of America Journal, 2003, 67, 268.	2.2	12
131	Towards effective drought monitoring in the Middle East and North AfricaÂ(MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco. Hydrology and Earth System Sciences, 2022, 26, 2365-2386.	4.9	12
132	Policies, plans, practice, and prospects: irrigation in northeastern Syria. Land Degradation and Development, 2007, 18, 133-152.	3.9	11
133	Climate, agriculture, and hunger: statistical prediction of undernourishment using nonlinear regression and data-mining techniques. Journal of Applied Statistics, 2015, 42, 2367-2390.	1.3	11
134	Potential for city parks to reduce exposure to BTEX in air. Environmental Sciences: Processes and Impacts, 2019, 21, 40-50.	3.5	11
135	The seasonality of cholera in sub-Saharan Africa: a statistical modelling study. The Lancet Global Health, 2022, 10, e831-e839.	6.3	11
136	Using enhanced GRACE water storage data to improve drought detection by the U.S. and North American Drought Monitors. , 2010, , .		10
137	Influence of the Spatial Resolution of the Exposure Estimate in Determining the Association between Heat Waves and Adverse Health Outcomes. Annals of the American Association of Geographers, 2019, 109, 875-886.	2.2	10
138	Estimating variability in downwelling surface shortwave radiation in a tropical highland environment. PLoS ONE, 2019, 14, e0211220.	2.5	10
139	Rainfall Variability across the Agro-Climatic Zones of a Tropical Highland: The Case of the Jema Watershed, Northwestern Ethiopia. Environments - MDPI, 2019, 6, 118.	3.3	10
140	What Are the Domestic and Regional Impacts From Ethiopia's Policy on the Export Ban of Teff?. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	10
141	Characterization of heat index experienced by individuals residing in urban and rural settings. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 641-653.	3.9	10
142	A Two-Step Integrated MLP-GTWR Method to Estimate 1 km Land Surface Temperature with Complete Spatial Coverage in Humid, Cloudy Regions. Remote Sensing, 2021, 13, 971.	4.0	10
143	A framework for interdisciplinary research in food systems. Nature Food, 2021, 2, 1-3.	14.0	10
144	Earth observations of extreme heat events: leveraging current capabilities to enhance heat research and action. Environmental Research Letters, 2021, 16, 111002.	5.2	10

#	Article	IF	CITATIONS
145	The Role of Low-Level, Terrain-Induced Jets in Rainfall Variability in Tigris–Euphrates Headwaters. Journal of Hydrometeorology, 2017, 18, 819-835.	1.9	9
146	Simulated Dust Aerosol Impacts on Western Sahelian Rainfall: Importance of Ocean Coupling. Journal of Climate, 2018, 31, 9107-9124.	3.2	9
147	A Bayesian adaptive reservoir operation framework incorporating streamflow non-stationarity. Journal of Hydrology, 2021, 594, 125959.	5.4	9
148	Abundance of water bodies is critical to guide mosquito larval control interventions and predict risk of mosquito-borne diseases. Parasites and Vectors, 2013, 6, 179.	2.5	8
149	A Grand Prediction: Communicating and Evaluating 2018 Summertime Upper Blue Nile Rainfall and Streamflow Forecasts in Preparation for Ethiopia's New Dam. Frontiers in Water, 2019, 1, .	2.3	8
150	Indoor heat exposure in Baltimore: does outdoor temperature matter?. International Journal of Biometeorology, 2021, 65, 479-488.	3.0	8
151	Flooding and emergency department visits: Effect modification by the CDC/ATSDR Social Vulnerability Index. International Journal of Disaster Risk Reduction, 2022, 76, 102986.	3.9	8
152	Explaining National Trends in Terrestrial Water Storage. Frontiers in Environmental Science, 2019, 7, .	3.3	7
153	Analysis of the Spatial Patterns of Rainfall across the Agro-Climatic Zones of Jema Watershed in the Northwestern Highlands of Ethiopia. Geosciences (Switzerland), 2019, 9, 22.	2.2	7
154	Optimization-Based Systems Modeling for the Food-Energy-Water Nexus. Current Sustainable/Renewable Energy Reports, 2021, 8, 4-16.	2.6	7
155	ENSO Teleconnection to Eastern African Summer Rainfall in Global Climate Models: Role of the Tropical Easterly Jet. Journal of Climate, 2021, 34, 293-312.	3.2	7
156	On the potential for alternative greenhouse gas equivalence metrics to influence sectoral mitigation patterns. Environmental Research Letters, 2013, 8, 014033.	5.2	6
157	Using climate regionalization to understand Climate Forecast System Version 2 (CFSv2) precipitation performance for the Conterminous United States (CONUS). Geophysical Research Letters, 2016, 43, 6485-6492.	4.0	6
158	Land Use Evaluation over the Jema Watershed, in the Upper Blue Nile River Basin, Northwestern Highlands of Ethiopia. Land, 2019, 8, 50.	2.9	6
159	Monitoring intra-urban temperature with dense sensor networks: Fixed or mobile? An empirical study in Baltimore, MD. Urban Climate, 2021, 39, 100979.	5.7	6
160	Modulation of East African Boreal Fall Rainfall: Combined Effects of the Madden–Julian Oscillation (MJO) and El Niño–Southern Oscillation (ENSO). Journal of Climate, 2022, 35, 2019-2034.	3.2	6
161	La Niña weather impacts dietary patterns and dietary diversity among children in the Peruvian Amazon. Public Health Nutrition, 2021, 24, 3477-3487	2.2	5
162	Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins. Hydrology and Earth System Sciences, 2021, 25, 41-61.	4.9	5

#	Article	IF	CITATIONS
163	Shaping the Future of Science: COVIDâ€19 Highlighting the Importance of GeoHealth. GeoHealth, 2021, 5, e2021GH000412.	4.0	5
164	Estimation of Suspended Sediment Concentration from Remote Sensing and In Situ Measurement over Lake Tana, Ethiopia. Advances in Civil Engineering, 2021, 2021, 1-17.	0.7	5
165	Characterizing Particulate Matter Exfiltration Estimates for Alternative Cookstoves in a Village-Like Household in Rural Nepal. Environmental Management, 2017, 60, 797-808.	2.7	4
166	Hyperspectral satellite imagery detection of ancient raw material sources: Softâ€stone vessel production at Aqir alâ€Shamoos (Oman). Archaeological Prospection, 2018, 25, 363-374.	2.2	4
167	Strength of Linkages Between Dust and Circulation Over North Africa: Results From a Coupled Modeling System With Active Dust. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030961.	3.3	4
168	North Atlantic centers of action and seasonal to subseasonal temperature variability in Europe and eastern North America. International Journal of Climatology, 2021, 41, E1775.	3.5	4
169	Use of Environmental Parameters to Model Pathogenic Vibrios in Chesapeake Bay. Journal of Environmental Informatics, 0, , .	6.0	4
170	A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship. Hydrology and Earth System Sciences, 2020, 24, 5473-5489.	4.9	4
171	Analysis of agriculturally relevant rainfall characteristics in a tropical highland region: An agroecosystem perspective. Agricultural and Forest Meteorology, 2021, 311, 108697.	4.8	4
172	Compound Effects of Climate Change on Future Transboundary Water Issues in the Middle East. Earth's Future, 2022, 10, .	6.3	4
173	Architectural plasticity in a Mediterranean winter annual. Plant Signaling and Behavior, 2012, 7, 492-501.	2.4	3
174	Impact of Climate Change on Vector-Borne Disease in the Amazon. , 2014, , 193-210.		3
175	A Continuum Approach to Understanding Changes in the ENSO–Indian Monsoon Relationship. Journal of Climate, 2021, 34, 1549-1561.	3.2	3
176	The 2020 WMO Symposium on Climatological, Meteorological and Environmental factors in the COVID-19 pandemic: A special issue from symposium presentations. One Health, 2021, 12, 100243.	3.4	3
177	Influence of the Boreal Summer Intra-Seasonal Oscillation on rainfall in the Blue Nile Basin. Climate Dynamics, 2021, 57, 3433-3445.	3.8	3
178	Estimating changes in emergency department visits associated with floods caused by Tropical Storm Imelda using satellite observations and syndromic surveillance. Health and Place, 2022, 74, 102757.	3.3	3
179	GeoHealth Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. Earth and Space Science, 2022, 9, .	2.6	3
180	Climate Information for Arbovirus Risk Monitoring: Opportunities and Challenges. Bulletin of the American Meteorological Society, 2016, 97, ES107-ES111.	3.3	2

#	Article	IF	CITATIONS
181	Enhancing Dynamical Seasonal Predictions through Objective Regionalization. Journal of Applied Meteorology and Climatology, 2017, 56, 1431-1442.	1.5	2
182	Earth Observation and Climate Services for Food Security and Agricultural Decision Making in South and Southeast Asia. Bulletin of the American Meteorological Society, 2019, 100, ES171-ES174.	3.3	2
183	Challenges in Reconciling Satellite-Based and Locally Reported Estimates of Wetland Change: A Case of Topographically Constrained Wetlands on the Eastern Tibetan Plateau. Remote Sensing, 2021, 13, 1484.	4.0	2
184	Topography Impacts Hydrology in the Sub-Humid Ethiopian Highlands. Water (Switzerland), 2022, 14, 196.	2.7	2
185	Coupled Model Intercomparison Project phase 5 and 6 representation of peak and end of rainy season over Upper Blue Nile basin. International Journal of Climatology, 2022, 42, 8489-8508.	3.5	2
186	Applying Earth Observations to Water Resources Challenges. Springer Remote Sensing/photogrammetry, 2016, , 147-171.	0.4	1
187	A GeoHealth Response to a Geoscience Community Climate Change Position Statement. GeoHealth, 2020, 4, e2020CH000265.	4.0	1
188	Climate and land use drivers of the spatial and temporal distribution of malaria risk in the Peruvian Amazon. ISEE Conference Abstracts, 2013, 2013, 4668.	0.0	1
189	Better Advance Warnings of Drought: A New NASA Hydrological Forecast System. Bulletin of the American Meteorological Society, 2020, 101, 899-903.	3.3	1
190	A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship. Nonlinear Processes in Geophysics, 2022, 29, 1-15.	1.3	1
191	An integrated hydrological and water management study of the entire Nile river system - Lake Victoria to Nile delta. , 2011, , .		0
192	Understanding the Dynamics of the Tropical African Climate. Eos, 2013, 94, 209-209.	0.1	0
193	A Regional Drought Monitoring and Outlook System for South Asia. , 2021, , 59-78.		0
194	The Impact of Sustained Malaria Control in the Loreto Region of Peru: A Retrospective, Observational, Spatial Interrupted Time Series Analysis of the Pamafro Program. SSRN Electronic Journal, 0, , .	0.4	0
195	Water, water quality and health. , 2012, , 115-156.		0