
Geoffrey S Tyndall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	848
2	Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. Chemical Society Reviews, 2012, 41, 6294.	38.1	406
3	Absorption cross-sections of NO2 in the UV and visible region (200 – 700 nm) at 298 K. Journal of Photochemistry and Photobiology A: Chemistry, 1987, 40, 195-217.	3.9	232
4	A Product Yield Study of the Reaction of HO2Radicals with Ethyl Peroxy (C2H5O2), Acetyl Peroxy (CH3C(O)O2), and Acetonyl Peroxy (CH3C(O)CH2O2) Radicals. Journal of Physical Chemistry A, 2004, 108, 5979-5989.	2.5	215
5	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	3.8	189
6	Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Physical Chemistry Chemical Physics, 2016, 18, 10241-10254.	2.8	179
7	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	10.0	172
8	Absorption cross sections for water vapor from 183 to 193 nm. Geophysical Research Letters, 1997, 24, 2195-2198.	4.0	127
9	Product studies of the OH- and ozone-initiated oxidation of some monoterpenes. Journal of Geophysical Research, 2000, 105, 11561-11572.	3.3	107
10	Mechanism of the OH-initiated oxidation of methacrolein. Geophysical Research Letters, 1999, 26, 2191-2194.	4.0	89
11	Rate coefficients and mechanisms of the reaction of cl-atoms with a series of unsaturated hydrocarbons under atmospheric conditions. International Journal of Chemical Kinetics, 2003, 35, 334-353.	1.6	89
12	The Atmospheric Chemistry of Glycolaldehyde. Journal of Atmospheric Chemistry, 2001, 39, 171-189.	3.2	79
13	Title is missing!. Journal of Atmospheric Chemistry, 2000, 35, 59-75.	3.2	75
14	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology, 2017, 51, 2519-2528.	10.0	75
15	Rate Coefficients and Product Yields from Reaction of OH with 1-Penten-3-ol, (Z)-2-Penten-1-ol, and Allyl Alcohol (2-Propen-1-ol). Journal of Physical Chemistry A, 2001, 105, 3564-3569.	2.5	72
16	Origin of oxidized mercury in the summertime free troposphere over the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 1511-1530.	4.9	68
17	Rate coefficients for the reactions of OH radicals with Methylglyoxal and Acetaldehyde. International Journal of Chemical Kinetics, 1995, 27, 1009-1020.	1.6	66
18	Pressure dependence of the rate coefficients and product yields for the reaction of CH3CO radicals with O2. International Journal of Chemical Kinetics, 1997, 29, 655-663.	1.6	65

GEOFFREY S TYNDALL

#	Article	IF	CITATIONS
19	Mechanism of the reaction of OH radicals with acetone and acetaldehyde at 251 and 296 K. Physical Chemistry Chemical Physics, 2002, 4, 2189-2193.	2.8	58
20	Rate Coefficients for the Thermal Decomposition of BrONO2and the Heat of Formation of BrONO2. The Journal of Physical Chemistry, 1996, 100, 19398-19405.	2.9	57
21	Title is missing!. Journal of Atmospheric Chemistry, 1999, 33, 321-330.	3.2	56
22	Chemistry of the Cyclopentoxy and Cyclohexoxy Radicals at Subambient Temperatures. Journal of Physical Chemistry A, 2000, 104, 5072-5079.	2.5	56
23	The atmospheric chemistry of the HC(O)CO radical. International Journal of Chemical Kinetics, 2001, 33, 149-156.	1.6	53
24	The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 2018, 11, 1695-1723.	3.6	51
25	Atmospheric Oxidation of CH3Br:Â Chemistry of the CH2BrO Radical. The Journal of Physical Chemistry, 1996, 100, 7026-7033.	2.9	47
26	Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US. Atmospheric Chemistry and Physics, 2020, 20, 3739-3776.	4.9	47
27	Atmospheric chemistry of CH2BR2: Rate coefficients for its reaction with Cl atoms and OH and the chemistry of the CHBr2O radical. International Journal of Chemical Kinetics, 1996, 28, 433-442.	1.6	44
28	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032657.	3.3	41
29	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033484.	3.3	36
30	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	4.9	34
31	Photolysis of ozone at 308 and 248 nm: Quantum yield of O(Â1D) as a function of temperature. Geophysical Research Letters, 1997, 24, 1091-1094.	4.0	33
32	Atmospheric chemistry of acetone: Kinetic study of the CH3C(O)CH2O2+NO/NO2 reactions and decomposition of CH3C(O)CH2O2NO2. International Journal of Chemical Kinetics, 1998, 30, 475-489.	1.6	32
33	Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance. Atmospheric Chemistry and Physics, 2019, 19, 813-834.	4.9	32
34	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	10.0	31
35	Absolute and Relative Rate Constants for the Reactions CH3C(O)O2 + NO and CH3C(O)O2 + NO2 and Thermal Stability of CH3C(O)O2NO2. Journal of Physical Chemistry A, 1998, 102, 1779-1789.	2.5	30
36	The atmospheric oxidation of ethyl formate and ethyl acetate over a range of temperatures and oxygen partial pressures. International Journal of Chemical Kinetics, 2010, 42, 397-413.	1.6	26

GEOFFREY S TYNDALL

#	Article	IF	CITATIONS
37	Impacts of the Denver Cyclone on regional air quality and aerosol formation in the Colorado Front Range during FRAPPÉÂ2014. Atmospheric Chemistry and Physics, 2016, 16, 12039-12058.	4.9	24
38	Stratospheric CH3CN from the UARS Microwave Limb Sounder. Geophysical Research Letters, 2001, 28, 779-782.	4.0	23
39	Atmospheric Processing of Nitrophenols and Nitrocresols From Biomass Burning Emissions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033401.	3.3	23
40	Temperature-dependent rate coefficient measurements for the reaction of bromine atoms with trichloroethene, ethene, acetylene, and tetrachloroethene in air. International Journal of Chemical Kinetics, 2001, 33, 198-211.	1.6	19
41	Rate coefficients for the reactions of O(3P) with selected biogenic Hydrocarbons. International Journal of Chemical Kinetics, 1995, 27, 997-1008.	1.6	18
42	Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO ₂ : implications for <i>l´</i> ¹⁵ N in tropospheric reactive nitrogen. Atmospheric Chemistry and Physics, 2020, 20, 9805-9819.	4.9	18
43	Oxidation Mechanisms for Ethyl Chloride and Ethyl Bromide under Atmospheric Conditions. Journal of Physical Chemistry A, 2002, 106, 312-319.	2.5	17
44	Molecular characterization of alkyl nitrates in atmospheric aerosols by ion mobility mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 5535-5545.	3.1	15
45	AÂsteady-state continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically relevant NO levels. Atmospheric Measurement Techniques, 2018, 11, 2537-2551.	3.1	14
46	Upper limits for the rate coefficients for reactions of BrO with formaldehyde and HBr. Geophysical Research Letters, 2000, 27, 2633-2636.	4.0	12
47	Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA. Atmospheric Chemistry and Physics, 2016, 16, 11207-11217.	4.9	12
48	Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033730.	3.3	12
49	Atmospheric Fate of a New Polyfluoroalkyl Building Block, C ₃ F ₇ OCHFCF ₂ SCH ₂ CH ₂ OH. Environmental Science & Technology, 2022, 56, 6027-6035.	10.0	11
50	Experimentally Determined Site-Specific Reactivity of the Gas-Phase OH and Cl + <i>i</i> -Butanol Reactions Between 251 and 340 K. Journal of Physical Chemistry A, 2016, 120, 9968-9981.	2.5	9
51	Spatially Resolved Photochemistry Impacts Emissions Estimates in Fresh Wildfire Plumes. Geophysical Research Letters, 2021, 48, e2021GL095443.	4.0	7
52	The atmospheric oxidation of hydroxyacetone: Chemistry of activated and stabilized CH 3 C(O)CH(OH)OO• radicals between 252 and 298 K. International Journal of Chemical Kinetics, 2020, 52, 236-250.	1.6	5
53	Wildfire-driven changes in the abundance of gas-phase pollutants in the city of Boise, ID during summer 2018. Atmospheric Pollution Research, 2022, 13, 101269.	3.8	5
54	Formation and Evolution of Catechol-Derived SOA Mass, Composition, Volatility, and Light Absorption. ACS Earth and Space Chemistry, 0, , .	2.7	3